This week is the first study week for the new students of Applied Measurement Science and EACH Erasmus Mundus Joint Programme. Altogether 21 students started their studies. The countries of origin of the students are very diverse: Vietnam, Philippines, USA, Dominican Republic, Russia, Kazakhstan, Ukraine, Bulgaria, Lithuania, Yemen, Taiwan, Nigeria, Moldova, and Bangladesh.

This year the studies start very differently from previous years, because of the COVID-19. As of now, the majority of students are still not in Estonia. However, the programme team has made extensive preparations for providing e-learning possibilities and we are confident that in spite of the late arrival of many students we will be able to successfully carry out all the necessary teaching activities. The “group photo” on the left (from the introductory session) illustrates the situation.

During the online introductory meeting on Monday 31.08.20 an overview of both programmes was given (see the slides), the autumn semester timetable was explained in detail and a large number of questions were asked and answered.

We wish successful studies to all new students!

 

On the 3rd of June, 2020, six AMS master students successfully defended their master’s theses.

The defenders’ theses demonstrated the wide scope of the field of applied measurement science. The topics of their studies ranged from analytical chemistry to biochemistry, even including interdisciplinary bioelectrochemistry. In their experiments, various techniques were applied from solid-phase extraction combined with LC-MS/MS to x-ray photoelectron spectroscopy.

On the photo, from left to right: Waseem Ahmad Iftikhar, Ohimai Kelvin Ijegbai, Adeyinka Jimoh Akintola, Antonio Ivan Manuell Nava, Joshua Onyeka Osagu, Dmytro Danilian.

Full list of students and thesis topics:

  • Waseem Ahmad Iftikhar: Determination antibacterials in river water by solid-phase extraction using LC-MS/MS
  • Ohimai Kelvin Ijegbai: The optimization of conditions for the start-up of anammox bacteria seeded with nonspecific biomass
  • Adeyinka Jimoh Akintola: Characterization of a Temperature Measurement System for Use in Vacuum
  • Antonio Ivan Manuell Nava: Nitrogen removal in anaerobic ammonium oxidation process-based bioelectrochemical system
  • Joshua Onyeka Osagu: Simultaneous Determination of Selected Antimicrobial Agents In Sewage Sludge By Pressurised Liquid Extraction And LC-MS/MS
  • Dmytro Danilian: X-Ray Photoelectron Spectroscopy Studies of Carbon-Based Electrocatalytic Materials

Congratulations and wishing you all the best for your future!

On May 12, 2020 the on-line course (MOOC) Estimation of measurement uncertainty in chemical analysis offered by University of Tartu finished successfully.
Eventually altogether 843 people registered (270 in 2014, 489 in 2015, 757 in 2016, 363 in 2017, 521 in 2018, 590 in 2019) from 95 countries (a number of participants joined after the start of the course). 600 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 464 successfully completed the course (141 in 2014, 169 in 2015, 308 in 2016, 148 in 2017, 358 in 2018, 238 in 2019). The overall completion rate was 55% (52% in 2014, 34% in 2015, 40% in 2016, 41% in 2017, 42% in 2018, 40% in 2019). The completion rate of participants who started the studies was 77% (67% in 2014, 60% in 2015, 67% in 2016, 68% in 2017, 61% in 2018, 62% in 2019). The completion rate this year is the best we have seen and can be considered excellent for a MOOC, especially one that has quite difficult calculation exercises, which need to be done correctly for completing the course.

The participants were very active and asked lots of questions. The questions were often very much to the point and addressed things that are really important to analysts in their everyday work. The course has several forums (general and by topic) and during the course period the overall number of forum posts was close to 600 (!) (overall number of posts, both from participants and from teachers) and the forums are still active and posts are still coming in.

This active participation made teaching of this MOOC a great experience also for us, the teachers. The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials, even during the course.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Spring 2021.

 

The UT Analytical Chemistry group is well known for its acid-base studies, especially pKa measurements, in non-aqueous media. Up to recent time the measured data have been scattered among a number of publications containing pKa measurements.

Now the pKa data of acids and bases in different solvents – acids in MeCN and 1,2-Dichloroethane; bases in THF, MeCN and 1,2-dichloroethane – are compiled into collections of experimental acidity and basicity data in non-aqueous media measured by the UT analytical chemistry group are now up to date on group’s webpage.

Both tables include the compounds name, CAS number and SMILES code. The acidity collection contains 190 compounds, where the compounds available experimentally measured pKa in acetonitrile (MeCN) and pKip in 1,2-dichloroethane (DCE) are given. The pKa in DCE is calculated/estimated based on pKip value.

The basicity data collection includes 353 compounds and their pKip in tetrahydrofuran (THF) and in DCE. The pKa values in MeCN were re-evaluated taking into account all (close to 700) measurements of 279 bases. Therefore, these pKa values can be considered the most reliable pKa values measured in MeCN available!

We welcome everybody to use the pKa values and propose other compounds for which pKa values should be measured.

 

On Tuesday, March 24, 2020 the web course Estimation of Measurement Uncertainty in Chemical Analysis was launched the seventh time as a MOOC (Massive Online Open Course)!

Currently 828 participants from 92 countries are registered – the largest audience the course has ever had! As was the case in the previous years, the majority of participants are from analytical laboratories. This once again demonstrates the continuing need for training in measurement uncertainty estimation for practicing analytical chemists.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to pass six graded tests and get higher than 50% score from each of them. These tests are available to registered participants via the Moodle e-learning platform.

This course is run under the umbrella of the Estonian Center of Analytical chemistry (https://www.akki.ee/) and forms a part of the measurements and chemical analysis related master programmes at UT: Applied Measurement Science (https://ams.ut.ee/) and Excellence in Analytical Chemistry (https://www.analyticalchemistry.eu/).

 

On Feb 14, 2020 our LC-MS Method Validation web course (MOOC) finished successfully!
Altogether 515 (426 in 2019, 424 in 2018, 303 in 2017) people were registered from 77 (70 in 2019, 71 in 2018, 61 in 2017) countries. 267 (227 in 2019, 236 in 2018, 224 in 2017) participants actually started the course (i.e. tried at least one graded test at least once) and out of them 161 (125 in 2019, 159 in 2018, 168 in 2017) successfully completed the course. The overall completion rate was 31% (29% in 2019, 37% in 2018, 55% in 2017). The completion rate of participants who actually started the studies was 60% (55% in 2019, 67% in 2018, 75% in 2017). It is pleasant to see that the completion rate of the of the course seems to be stabilizing (as opposed to the clearly negative trend observed last year) and in fact more than 50% completion rate of people who actually started the course can be considered very good by any measure.

As has been the usual case with our online courses, the questions from the participants were often very interesting, often addressed things that are really important to analysts in their everyday work. Such discussions made teaching this course a great experience also for us, the teachers!

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Autumn-Winter 2020-2021.

The 2020 edition of the web course (MOOC) Estimation of Measurement Uncertainty in Chemical Analysis will be running during Mar 24 – May 5, 2020. Registration is open!

The full course material (as well as the registration link) is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises) and examples. Almost all areas of analytical chemistry are addressed, ranging from simple titrations to sophisticated instrumental analysis, such as determining pesticide residues by LC-MS.

In order to pass the course, the registered participants have to take six graded tests and get higher than 50% score in every graded test. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from University of Tartu. A digital certificate of completion is free of charge. A certificate of completion on paper can be requested for a fee of 60 euros.

You are welcome to distribute this message to potentially interested people!

 

On Tuesday, November 26, 2019 the web course LC-MS Method Validation was launched for the fourth time as a MOOC (Massive Online Open Course). There are 511 registered participants (the largest number ever in this course) from 77 countries, ranging from Guatemala to Azerbaijan and from Finland to Sudan. Image on the left shows the countries where the participants come from.

This is a practice-oriented on-line course on validation of analytical methods, specifically using LC-MS as technique. The course introduces the main concepts and mathematical apparatus of validation, covers the most important method performance parameters and ways of estimating them. The LC-MS validation course is delivered by a team of 8 teachers, each with their own specific area of competence. This way it is expected to offer the best possible knowledge in all the different subtopics of analytical method validation.

The full set of course materials is accessible from the web page https://sisu.ut.ee/lcms_method_validation/. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged calculation exercises). In order to pass the course the registered participants have to take all tests and get higher than 50% score from each of them. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from the University of Tartu.

 

In a recent minireview, published in Eur. J. Org. Chem. an important part of our group’s acid-base chemistry research has been summarized: the pKa values of bases (pKaH values) determined over the years in acetonitrile have now been rigorously united into a single scale, whereby all the involved ΔpKa values have been considered for deriving the absolute pKaH values of the bases involved. Altogether 279 basic compounds are included in the scale from all major groups of organic bases (amines, pyridines, imidazoles, anilines, amidines, guanidines, phosphazenes, etc) and are linked with altogether 682 ΔpKa measurements.

The minireview also presents possibilities to predict the pKa values of bases in other media – namely water, DMSO and THF – on the basis of MeCN pKaH values. It is expected that this minireview will be a useful tool for future researchers who need pKa values of bases in nonaqueous solvents for planning their studies or for interpreting research results.

 

This week is the first study week for the new students of Applied Measurement Science and EACH Erasmus Mundus Joint Programme. Altogether 21 students started their studies. The countries of origin of the students are very diverse: Vietnam, Philippines, Estonia, Nepal, Thailand, Peru, Ukraine, Azerbaijan, Sri Lanka, China, Italy, Serbia, Belarus, Poland, Mexico and Kazakhstan.
During the introductory meeting on Monday 02.09.18 an overview of both programmes was given (see the slides), the autumn semester timetable was explained in detail (see the timetable) and a large number of questions were asked and answered, accompanied by tea/coffee and cake.

We wish successful studies to all new students!

 

Starting from July 07, 2019 the MSC Summer School 2019 is taking place in Lyon (France), organized by the University Claude Bernard Lyon 1.

Five students from the University of Tartu take part in the summer school: Dariya Tukhmetova (Kazakhstan), Jeewan Babu Rijal (Nepal), Nhung Dang Thi Hong (Vietnam), Larissa Silva Maciel (Brazil) and Marvy Girgis (Egypt).

As in previous years, a core aim of the Summer school is teaching measurement science (metrology) topics related to analytical chemistry using active learning (“learning by doing”) approaches, as far as possible. Thus, efforts are made for increasing the share of discussions, hands-on work, teamwork. A key activity of the summer school is the contest of student teams (setting up virtual laboratories and interacting with customers), which tests their knowledge and skills in all areas of metrology in chemistry. This time the task is determining caffeine content in a cotton patch using UV-Vis spectrophotometry.

As always, serious studies and work are intermixed with fun. On Friday the whole group visited Chamonix and took the cable car to the top of Aiguille du Midi mountain (3842 meter height). Unforgettable experience for the participants!

We wish all the participants successful continuation of the summer school!

(Photo on the left by Dariya Tukhmetova: Dariya, Jeewan, Nhung, Larissa and Marvy at the Summer school; photo on the right by Marvy Girgis: UT participants in Chamonix)

 

Today (June 04, 2019) 4 AMS master students successfully defended their master’s theses.

Congratulations to all of you!

Photo on the left, from left to right: Huy Qui Vinh Nguyen, Ismail Sarigül, Mahvish Faisal and Nguyen Kim Ngan Bui.

As is usual for the AMS programme the topics of the theses were diverse ranging from analytical chemistry to molecular biology and from organic synthesis to applied electrochemistry. The full list of the defenders and their thesis titles is below. This list demonstrates well the ubiquitous nature of measurement science. The scientific/technological quality of the theses was high: all students got either “A” or “B”.

 

Full list of students and thesis topics:

  • Nguyen Kim Ngan Bui, Determination of Amino Acids in Bee Products by Diethyl ethoxymethylenemalonate Derivatization Using LC-ESI-MS/MS
  • Mahvish Faisal, Isosorbide-Based Monomers and Novel Stiff Biobased Polymer
  • Huy Qui Vinh Nguyen, Oxygen Reduction on Platinum Nanoparticles Deposited onto Chromium Carbide-Derived Carbon Support
  • Ismail Sarigül, Functional Interactions of Metalloprotein YbeY, Involved in Ribosomal Metabolism, with the Putative Metal Efflux Protein YbeX

 

During May 20-21, 2019 the Eurachem 2019 Scientific workshop Validation of targeted and non-targeted methods of analysis took place in Dorpat Conference Centre in Tartu. This workshop also marks the 30th anniversary of Eurachem.

Approximately 160 people attended the workshop, which is the largest number of participants in the history of Eurachem workshops! The participants were from 42 countries of the member countries in Eurachem as well as Asia, North America, South America and Middle East. The farthest participants were from Fiji, the Philippines, Uruguay and Brazil.

The workshop was held with 13 oral presentations from established researchers, young scientists as well as industries. Together with 22 posters all presentations reflected the current and potential future developments related to methods validation. The workshop addressed the current status of analytical method validation in general and specifically validation of the non-targeted methods (i.e. ones where the analyte is not defined beforehand). With the speaker permissions, all presentations will shortly be available at the Eurachem website. In addition to presentations, each day a Working Group session was organised with 3 topics in parallel (Image on the left: Welcome by Dr Marina Patriarca, the Eurachem chair).

Non-targeted methods are an especially noteworthy part of the programme, because their validation involves specific issues and their validation is significantly less developed than validation of targeted methods (i.e. the “normal” analytical methods, where the analyte is known beforehand). At the same time non-targeted methods are becoming increasingly important in environmental protection, food safety, different omics areas, etc. (Image on the right: Prof. Jon Benskin from Stockholm University presenting an introduction to non-targeted analysis)

All sessions raised new issues and challenges, especially related to non-target method validation. The workshop clearly was also very inspirational for Eurachem from the point of view of preparing new guideline materials – especially the topics related to non-targeted analysis are still essentially not covered by official guidance documents.

Some example topics of the workshop: Validation of targeted methods: where are we? Validation of non-targeted methods – differences from targeted methods. Detection of a multitude of (unknown) components in complex samples: criteria for identification. Managing the huge amounts of complex data from non-targeted methods. Recent instrumental developments. Software tools for validation. (Image on the left: Dr. Koit Herodes presenting the ValChrom validation software)

The workshop certaily had a significant educational value and we are pleased by the large number of student participants: altogether close to 50! The international master’s programmes Excellence in Analytical Chemistry and Applied Measurement Science were both heavily represented: the majority of students of those programmes participated in the workshop (Image on the left: EACH and AMS students at the workshop).

The workshop was jointly organized by Eurachem and ECAC (University of Tartu, Tallinn University of Technology and the Estonian Environmental Research Centre).

 

Measurement_Uncertainty_MOOC_Successfully_FinishedOn May 14, 2019 the on-line course (MOOC) Estimation of measurement uncertainty in chemical analysis offered by University of Tartu finished successfully.
Eventually altogether 590 people registered (270 in 2014, 489 in 2015, 757 in 2016, 363 in 2017, 521 in 2018) from 86 countries (a number of participants joined after the start of the course). 381 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 238 successfully completed the course (141 in 2014, 169 in 2015, 308 in 2016, 148 in 2017, 358 in 2018). The overall completion rate was 40% (52% in 2014, 34% in 2015, 40% in 2016, 41% in 2017, 42% in 2018). The completion rate of participants who started the studies was 62% (67% in 2014, 60% in 2015, 67% in 2016, 68% in 2017, 61% in 2018). The completion rates are consistent over the last years and can be considered very good for a MOOC, especially one that has quite difficult calculation exercises, which need to be done correctly for completing the course.

The participants were very active and asked lots of questions. The questions were often very much to the point and addressed things that are really important to analysts in their everyday work. The course has several forums (general and by topic) and the overall number of posts to them during the course period exceeded 400 (!) (overall number of posts, both from participants and from teachers) and the forums are still active and posts are still coming in.

This active participation made teaching of this MOOC a great experience also for us, the teachers. The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials, even during the course.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Spring 2020.

 

During Apr 22 to May 4 we had the pleasure to host visiting scholar, prof. Todd Pagano from the Rochester Institute of Technology (RIT), USA. He conducted, for the second time, a two week-intensive course Principles and applications of fluorescence spectroscopy.

In this course, students reviewed the principles of fluorescence spectroscopy, were introduced to the impact of photophysical phenomena on fluorescence data, and discussed new directions of fluorescence in analytical chemistry. Techniques in multidimensional fluorescence spectroscopy with chemometric analysis were highlighted, especially in the context of novel applications in environmental and related fields. The course consisted of lectures, seminars, tutorial sessions and two lab practicals. The latter were specifically set up for this course by prof. Pagano and were very much appreciated by students.

The first practical was about discovering the fundamental concepts of fluorescence (excitation and emission spectra, Stokes shift, Vavilov’s rule, fluorescence lifetime, etc). The second practical was about analysis of caffeine in beverages using salicylic acid as a fluorescent chemosensor. This analysis utilizes the ability of caffeine to quench the fluorescence of salicylic acid and introduces students to the fluorescence quenching, Stern-Volmer equation and inner filter effects.

Altogether 30 students (out of them 14 EACH students) participated in the course and their feedback was overwhelmingly positive.

 

Prof. Pagano is a passionate educator. He was the initiator of the Laboratory Science Technology program at Rochester Institute of Technology’s National Technical Institute for the Deaf, which is a unique science programme, specifically designed for deaf students. He was named “2012 U.S. Professor of the Year” by the Council for Advancement and Support of Education and the Carnegie Foundation for the Advancement of Teaching.

 

(Images: top left, group photo of prof. Pagano with course participants; right: prof. Pagano with students in lab)

 

Choosing the best possible ion source is a very important step in liquid chromatography mass spectrometry (LC/MS) method development. In a recent paper ESI outcompetes other ion sources in LC-MS trace analysis Anal. Bioanal. Chem. 2019 Asko Laaniste from the UT Analytical chemistry group carried out a large scale survey of differen LCMS ion sources (and their different working modes) as applied to pesticide analysis. He compared electrospray ionisation (ESI) source, thermally focused/heated electrospray (HESI), atmospheric pressure photoionisation (APPI) source with and without dopant, and multimode source in ESI mode, atmospheric pressure chemical ionisation (APCI) mode, and combined mode using both ESI and APCI, i.e. altogether seven different ionisation modes for the analysis of 40 pesticides (see list below).

The lowest limits of detection (LoDs) were obtained by ESI and HESI. The widest linear ranges were observed with the conventional ESI source without heated nebulizer gas. ESI source was significantly less affected by matrix effect than the HESI source. APPI ranked second (after ESI) by not being influenced by matrix effect; therefore, it would be a good alternative to ESI if low LoDs are not required.

It was somewhat unexpected that ESI outperformed HESI. This may be caused by the instability of the additional heated gas (sheath gas) in HESI that is used in addition to the nebulising gas.

In conclusion, as a broad generalisation, Asko’s results show that although several new ion sources have been introduced during the last decade, the conventional ESI performs at least equally to these new ion sources in the case of polar to medium polarity pesticides. ESI with thermal focusing (HESI) performed more or less equally with ESI in terms of LoD. At the same time, HESI had significantly poorer intermediate precision of matrix effect values for most compounds. Thus, for trace analysis, ESI is still the ion source of choice.

(Full list of pesticides: pymetrozine, thiamethoxam, methiocarb-sulfoxide, chloridazon, imidacloprid, acetamiprid, methiocarb-sulfone, thiacloprid, imazalil, thiophanate-methyl, metribuzin, pyrimethanil, fenpropimorph, spiroxamine, propoxur, triasulfuron, bupirimate, paclobutrazol, methiocarb, azoxystrobin, epoxiconazole, myclobutanil, fenhexamid, fluquinconazole, flusilazole, mepanipyrim, bitertanol, propiconazole, triazophos, methoxychlor, ditalimfos, tebufenozide, benalaxyl, pyrazophos, buprofezin, indoxocarb, trifloxustrobin, quinoxyfen, pirimiphos-ethyl, hexythiazox)

 

(Image top left: Asko Laaniste preparing solutions; Image right: Comparison of accuracy of LC-MS analysis using different ion sources)

 

On Tuesday, March 26, 2019 the web course Estimation of Measurement Uncertainty in Chemical Analysis was launched the sixth time as a MOOC (Massive Online Open Course)!

Currently 530 participants from more than 80 countries are registered! As was the case in the previous years, the majority of participants are from analytical laboratories. This once again demonstrates the continuing need for training in measurement uncertainty estimation for practicing analytical chemists.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to pass six graded tests and get higher than 50% score from each of them. These tests are available to registered participants via the Moodle e-learning platform.

This course also forms a part of the measurements and chemical analysis related master programmes at UT: Applied Measurement Science and Excellence in Analytical Chemistry.

 

Starting from last week the Analytical chemistry group of University of Tartu has the pleasure to host Dr Monika Lindner and Hendrik van Thienen from the group of professor Benjamin List – a worldwide known guru in the field of strongly acidic catalysts working at the Max-Planck-Institut für Kohlenforschung (Mülheim, Germany).

The purpose of their stay is to learn our pKa measurement method and set it up in Mülheim. This is the logical continuation of our group’s collaboration with the List group – the pKa values of a number of their catalysts have been measured here at Tartu (see Nature Chemistry 2018, 10, 888-894 and Angew. Chem. Int. Ed. 2017, 56, 1411-1415) – and we are glad that our pKa measurement method thereby gains even wider acceptance than it has now. We wish Monika and Hendrik all the success in learning the measurements!

(On photo, from left: Märt Lõkov, Monika Lindner and Hendrik van Thienen)

 

During 24-26.02.2019 the Suprachem 2019 conference took place at University of Würzburg (Germany). The UT Analytical chemistry chair was represented by two posters: Optimization of the reaction pathway for the synthesis of substituted 1,3-bis(carbazolyl)urea anion receptors by Alo Rüütel and Mihkel Ilisson and From receptor-anion binding ladder to ion-selective electrode by Kerli Martin, Sandip A. Kadam, Ulriika Mattinen, Johan Bobacka and Ivo Leito.

The presentation from Alo and Mihkel focused on optimization of the synthesis route of anion receptors (ionophores) based on the 1,3-bis(carbazolyl)urea building block, augmented with additional amide functionalities (see the poster). The developed synthesis route is very valuable for the synthesis of a wide variety of analogous receptors (ionophores) that have previously been demonstrated to bind carboxylates with high affinity (see K. Martin et al, Eur. J. Org. chem. 2017, 5231-5237).

Kerli Martin et al present the first practical application of such receptors: a solid-contact acetate-selective electrodes. For acetate anion the electrodes show linearity over the activity range of 10-4.50 – 10-1.10 with a sub-Nernstian slope of -51.3 mV per decade and a detection limit of 10-5.00. The anion-selectivity pattern of these electrodes deviates markedly from the pattern found in DMSO solution and from the Hofmeister pattern. The selectivity coefficients of SCN, I, NO3 and Br decrease by 3-5 orders of magnitude when adding the studied ionophore to the membrane. The selectivity coefficients of hydrophilic anions such as Cl, F, HPO42–, and SO42– are significantly lower than in case of the ionophore-free control membrane. All in all, it is clear that a lot of work is still needed for improving the selectivity of the electrode.
This work has been accepted for publication: K. Martin et al Electroanalysis 2019 (the link will work soon).

The combined contributions from our group stood out from the majority (the conference altogether had 27 oral and 111 poster presentations) by a clear line of development from fundamental research (receptor design) to highly practical application (ion-selective electrode).

(Photos: above left: Mihkel Ilisson explaining his work to Dr Diane Smith from Wiley; right: Poster by Kerli Martin et al)

 

LCMS Method Validation online course offered by UTOn Feb 15, 2019 the on-line course (MOOC) LC-MS Method Validation finished successfully!
Altogether 426 (424 in 2018, 303 in 2017) people were registered from 70 countries (71 in 2018, 61 in 2017) countries. 227 (236 in 2018, 224 in 2017) participants actually started the course (i.e. tried at least one graded test at least once) and out of them 125 (159 in 2018, 168 in 2017) successfully completed the course. The overall completion rate was 29% (37% in 2018, 55% in 2017). The completion rate of participants who actually started the studies was 55% (67% in 2018, 75% in 2017). As can be seen, almost all these statistics have been getting worse year after year. We are working n analysing the situation. On the positive side it can be said that the completion rates more than 0% of those who started can be considered very good by any measure. Thus we probably can be reasonably happy with the completion rate that we have this time.

As has been the usual case with our online courses, the questions from the participants were often very interesting, often addressed things that are really important to analysts in their everyday work. Such discussions made teaching this course a great experience also for us, the teachers!

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Autumn 2019.

 

 

The 2019 edition of the web course (MOOC) Estimation of Measurement Uncertainty in Chemical Analysis will be running during Mar 26 – May 7, 2019. Registration is open!

The full course material (as well as the registration link) is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course, the registered participants have to take six graded tests and get higher than 50% score in every graded test. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from University of Tartu. A digital certificate of completion is free of charge. A certificate of completion on paper can be requested for a fee of 60 euros.

You are welcome to distribute this message to potentially interested people!

The UT analytical chemistry group is proud to be the leading organiser of the 2019 Eurachem General Assembly and the accompanying scientific workshop “Validation of targeted and non-targeted methods of analysis”!

The Workshop will take place in Tartu (Dorpat conference centre) on May 20th and 21st. The programme of the workshop, as well as registration and abstract submission are available at the event website:
https://eurachem2019.akki.ut.ee/

The workshop addresses the current status of analytical method validation in general and specifically validation of the non-targeted methods (i.e. ones where the analyte is not defined beforehand). Non-targeted methods are an especially noteworthy part of the workshop programme, because their validation involves specific issues (since analyte is not known it is not possible to make validation experiments with it) and is significantly less developed than validation of targeted methods (i.e. the “normal” analytical methods, where the analyte is known beforehand). At the same time non-targeted methods are becoming increasingly important in environmental protection, food safety, different omics areas, etc.

Some example topics of the workshop are: Validation of targeted methods: where are we? Validation of non-targeted methods – differences from targeted methods. Detection of a multitude of (unknown) components in complex samples: criteria for identification. Managing the huge amounts of complex data from non-targeted methods. Software solutions for validation.

Compact overview of the workshop can be found in the 2nd circular.

These events mark the 30th anniversary of Eurachem and are jointly organized by Eurachem and ECAC (University of Tartu, Tallinn University of Technology and the Estonian Environmental Research Centre).

We are hoping to see many of you in Tartu in May!

 

Today, On Nov 16, 2018 the General Conference on Weights and Measures (CGPM) unanimously decided to fundamentally remake the SI system of measurement units. Perhaps the most important change is that the kilogram will not be defined via a physical artefact – the platinum-iridium cylinder – but in terms of the Planck constant. As a result, for the first time the entire SI system will be defined entirely on the basis of fundamental constants, which has been the aim for decades!

The change will become effective on the 2019 World metrology day – May 20, 2019.

More information can be found in the post CGPM votes unanimously to change the SI by Dr Steve Ellison at the Eurachem website.

(Image: Wikipedia)

 

On Nov 05, 2018 Ivo Leito gave a presentation Unified pH about the pan-European research network of fundamental pH Research UnipHied (www.uniphied.eu) at the 7th Baltic Electrochemistry Conference organized by the University of Tartu.

The presentation started with explaining the need for the experimental realization and measurement capability of unified pH (pHabs). Thereafter the current state of art of measuring pHabs values was described and finally some first exemplary results were highlighted.

The presentation created a lot of interest from the participants and roughly as many questions were asked as for the other four presentations of the same session put together!

As of now, it is not possible to compare pH values of solutions made in different solvents, as every solvent has its own pH scale. This situation is highly unfortunate, since it causes confusion and inaccuracies into many fields, extending far beyond the specific field of acid-base chemistry. Examples are industrial catalytic processes, food chemistry, liquid chromatograpy, etc.

The central aim of the UnipHied network is to establish at international level measurement capability of pHabs values that would be applicable also at routine laboratory level. The two key activities for achieving that are creating a reliable method for the experimental or computational evaluation of the liquid junction potential and between aqueous and non-aqueous solutions and developing a coherent and validated suite of calibration standards for standardizing routine measurement systems in terms of pHabs values for a variety of widespread systems (e.g., industrial mixtures, soils/waters, food products, biomaterials).

The partners of the UnipHied network are LNE (France, coordinator), BFKH (Hungary), CMI (Czech Republic), DFM (Denmark), IPQ (Portugal), PTB (Germany), SYKE (Finland), TÜBITAK-UME (Turkey), Freiburg University (Germany), ANBSensors (United Kingdom), FCiencias.ID (Portugal), UT (Estonia, initiator).

UnipHied is funded from the EMPIR programme (project 17FUN09) co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

 

On Oct 26, 2018 Ivo Leito gave presentation titled Analytical chemistry education activities at University of Tartu at the EcoBalt 2018 conference in Vilnius (Lithuania).

The presentation contains information about the on-line courses LC-MS Method Validation and Estimation of Measurement Uncertainty in Chemical Analysis, as well as the recently published tutorial reviews (Validation I, Validation II, LoD I, LoD II) that form the basis of the LC-MS Method Validation course.

The presentation also addresses the international master’s programmes Applied Measurement Science and Excellence in Analytical Chemistry at University of Tartu.

The last part of the talk is devoted to the Eurachem 2018 General Assembly and Workshop that will take place in Tartu on May 20-21, 2018. The topic of the workshop is “Validation of targeted and non-targeted methods of analysis”.

 

Validation_of_LC-MS_Methods_Online_CourseWe are glad to announce that the third edition of the online course LC-MS Method Validation is open for registration at the address https://sisu.ut.ee/lcms_method_validation/ !

The course will be offered as a Massive Open On-line Course (MOOC) during Nov 27, 2018 – Feb 08, 2019.

This is a practice-oriented on-line course on validation of analytical methods, specifically using liquid chromatography-mass spectrometry (LC-MS) as technique, mostly (but not limited to) using the electrospray (ESI) ion source. The course will also be of interest to chromatographists using other detector types. The course introduces the main concepts and mathematical apparatus of validation, covers the most important method performance parameters and ways of estimating them. The course is largely based on the recently published two-part tutorial review:

The course materials include lectures, practical exercises and numerous tests for self-testing. In spite of being introductory, the course intends to offer sufficient knowledge and mathematical skills for carrying out validation for most of the common LC-MS analyses in routine laboratory environment. The real-life analysis situations for which there are either examples or self-tests are for example determination of pesticides in fruits and vegetables, perfluoroalkyl acids in water, antibiotics in blood serum, glyphosate and AMPA in surface water, etc. It is important to stress, that for successful validation practical experience – both in analytical chemistry as such and also specifically in validation – is crucial and this can be acquired only through hands-on laboratory work, which cannot be offered via an on-line course.

Participation in the course is free of charge. Receiving digital certificate (in the case of successful completion) is also free of charge. Printed certificate (to be sent by post) is available for a fee of 60 EUR. Registration is possible until the start of the course. The course material is available from the above address all the time and can be used via web by anyone who wishes to improve the knowledge and skills in analytical method validation (especially when using LC-ESI-MS).

 

During 29.09-10.10.2018 the UT Institute of Chemistry has been hosting visiting scholar, Prof. Narendra Nath Ghosh from the Birla Institute of Technology and Science Pilani, K K Birla Goa Campus (India). He conducted an intensive course Nanomaterials and Nanotechnology and their Applications in Analytical Chemistry.

This lecture series started with introduction to nanomaterials and nanotechnology, the origin of nanotechnology and nanomaterials, and how and why the properties of nanomaterials are different from bulk materials. It then developed to cover design of a variety of nanostructured materials, their preparation techniques and different analytical instrumental methods for structural characterization of nanomaterials. Finally, a significant amount of time was devoted to the use of nanomaterials in different analytical techniques, especially in sensor applications and applications of these sensors in real life (detection and estimation of different types of analytes such as glucose, H2O2, metal ions, etc and how these nanosensors can be used for health monitoring, food quality monitoring, and environmental monitoring).

Altogether 15 students (out of them 7 AMS students) participated in the course and their feedback was very positive.

Prof. Ghosh is the Associate Dean, International Program and Collaboration at the Birla Institute of Technology and Science Pilani, K K Birla Goa Campus. His research interests embrace development of new and novel chemical methodologies for preparation of nanomaterials, mesoporous materials and nanocomposites, as well as applications of nanomaterials in catalysis, sensors, separations, microwave absorption, supercapacitor etc.

(Photo by Ivo Leito: Prof. Ghosh, in the middle, with students)

 

Recently the Analytical chemistry group of University of Tartu participated in a cutting-edge research endeavor: characterizing the acidity of some extremely efficient strongly acidic organocatalysts. In the case of the Mukaiyama aldol reaction the best of them (1) worked at low ppm to sub-ppm level, (2) gave excellent yields and (3) high enantiomeric selectivity as well as (4) turnover numbers (TON numbers) of hundreds of thousands (Nature Chemistry 2018, 10, 888-894).

The extent to which these four features occurred together in the same catalyst was so remarkable that the results were published in one of the most prestigious journals in chemical sciences: Nature Chemistry.

The extremely demanding acidity measurements were performed by Dr Karl Kaupmees using the unique non-aqueous acid-base chemistry facility that the group is running. The whole research project was led by the group of professor Benjamin List – a worldwide known guru in the field of strongly acidic catalysts working at the Max-Planck-Institut für Kohlenforschung.
These results are expected to open new avenues in development of powerful new organocatalysts.

(Photo by Andres Tennus: Karl doing acidity measurements in a glovebox under anhydrous conditions)

This week is the first study week for the new students of Applied Measurement Science and EACH Erasmus Mundus Joint Programme. Altogether 27 students started their studies. This is the largest joint number of students of these two programmes.

As a result of the rather large number of students, the countries of origin of the students are also very diverse: Vietnam, Philippines, Brazil, Estonia, Nepal, Thailand, Peru, India, Netherlands, Fiji, Albania, Nigeria, Mexico, Kazakhstan, Egypt, Ukraine, Pakistan and Turkey. And for the first time all six inhabited continents are represented!

During the introductory meeting on Monday 03.09.18 an overview of both programmes was given (see the slides) and a large number of questions were asked and answered, accompanied by tea/coffee and cake. The session ended with an entertaining “get-to-know-each-other” game organized by the tutor Kristi Palk (far left on the photo).

We wish successful studies to all new students!

 

On August 10, 2018 the master thesis defence session of the second of the EACH programme, the “sister programme” of AMS, took place at Åbo Akademi University (AAU)! Kenneth Arandia, Changbai Li, Jay Pee Oña and Jayaruwan Gunathilake Gamaethiralalage successfully defended their master’s theses. (first row on the photo, left to right)

Congratulations to all of you!

The defence took place in front of an international jury – Tom Lindfors (Finland), Patrik Eklund (Finland), Johan Bobacka (Finland), AdrianaFerancova (Slovakia/Finland), Ivo Leito (Estonia), Hanno Evard (Estonia). (second row on the photo, right to left, Hanno participated via Skype)

Most of the defended theses focused on development and applications of advanced electrochemical sensing devices – preparation of all-solid-state sensors, solid state reference electrodes, calibration-free potentiometric analytical devices, etc.

Most of the students who defended their theses have already secured either a PhD position or a job in industry.

(Photo: Jayaruwan Gunathilake)

 

A new paper on ancient dietary practices was recently published by our group (led by Dr. Ester Oras) in the Journal of Archaeological Science: “Social food here and hereafter: Multiproxy analysis of gender-specific food consumption in conversion period inhumation cemetery at Kukruse, NE-Estonia”.

We demonstrated the fruitfulness of multiproxy dietary analysis combining plant microfossil, human bone stable isotope and pottery related organic residue analysis. The results reveal that even 800 years ago men and women had different dietary habits: men preferred fish and higher trophic level terrestrial animals (e.g. pork), whilst women declined towards ruminant carcass (a nice steak!) and dairy products.

The paper is one of the few of its kind illustrating ancient food consumption as a highly social phenomenon, and setting an example for microscale dietary analysis in the future.

On Saturday 21.07.2018 The MSC Euromaster Summer School 2018 (Tallinn, Estonia) finished. It was the 11th summer school of the Measurement Science in Chemistry consortium. The hallmark of the MSC Summer schools is “learning by doing” and combining learning with fun, meeting new people and sharing experience. The feedback from the Tartu participants is below and it indicates that organizing these Summer schools it is worth the effort!

 

 

 

Angelique Dafun:
MSC Summer School is a great experience to learn and have fun at the same time. It encompasses intensive learning and practical applications of metrology and accreditation that are significant for an analytical chemist in a “learning through play” way. It is an opportunity to gain knowledge from the experts in the field and to learn about the culture of people from different parts of the world. The schedule is tight and a little bit tiring but having an amazing group of people made it really rewarding. With other Filipinos, we dream of having this kind of summer school in our country someday in order to improve our system in analytical measurement.

 

 

Nikola Obradović:
The MSC Summer School is a great opportunity for all those who want hands-on experience in operating a laboratory under ISO/IEC 17025. Through many theoretical and practical exercises, the participant of this course is led through the whole process of method validation. But, the school is not all about studying. There is much networking going on here, with people making friends and partnering up to do new and exciting projects. Thus, for many, the end of the Summer School marks the start of a whole new chapter in their lives. As the moto of school states: “To mesure is a pleasure!”

 

 

Mark Justine Zapanta:
The MSC Summer School provides a great opportunity to deepens one’s knowledge and understanding of measurement science and accreditation in a fun and exciting way. The “learning through play” theme of the School allows participants to apply theories by making them think, design, implement, and evaluate their approach to answer an analytical problem. Outside the walls of the classroom, participants get to broaden their social network as the School is highly diverse with people coming from different cultures and backgrounds and it is the cultural exchange that adds more flavor and spice to the summer school. Attending the MSC Summer School is truly a one of a kind experience!

 

 

Ernesto Zapata Flores:
Well, it was more than the expected, I mean I met people from different countries around the world, from Ghana, Myanmar, Ireland, Belgium, Portugal, etc. I made a lot of friends. By the other side, there were some topics that I had learned at the University of Tartu, but others were completely new to me. The Professors had an excellent attitude towards us. It was an extremely good experience, the group work gave a lot of stress but it was exciting because of sharing points of view with people from different backgrounds and countries contributed to enrich not only the project but my own knowledge.

 

 

 

On Sunday 8th July, 38 students from 17 countries made their way to the beautiful city of Tallinn. The round of introductions already told us a lot about the individuals, much more than they intended. On Monday 9th July, armed with a little information and lots of things to think about, from the earlier sessions, the students set off, in their teams, to collect sea water samples (Photo on the left). All managed to complete the task but for some the waters were muddied, in more ways than one. Finding out the next day, Tuesday 10th, that salinity measurements are not trivial was a rich learning experience and shed light on many of the pitfalls awaiting the unsuspecting sampler/analyst.

These issues were then further embedded and clarified in various lectures (parts of the resource or process requirements of the ISO/IEC 17025:2017 namely chapters 7.1, 6.1 to 6.6, 7.1-7.8). Already on Tuesday evening the various laboratories (TEAM ONE, JCPT, K2Y, Cool Lab, Djam, We Click!, Elk Analytical, G.I.M.M., ISO CHEM and MONALU) had clearly defined roles and responsibilities for each of their staff. This was about to be tested when they got started on their measurements in the laboratory on Thursday afternoon, following a review of basic lab skills the day before.

Once in the lab the mixture of more and less experienced people really proved to be invaluable for both. It was really lovely to see the exchange of advice, with younger people sharing their intimate knowledge of software such as excel and what it can do and slightly older people providing perspective on what’s really important with respect to fitness for purpose decisions etc. (Ready for the lab! Photo on the right)

When the students had completed five full days of the summer school and were unwinding a little bit in Mektory’s lovely garden, sharing national food, drink, language tips, jokes, songs, (tall) tales from their countries, the idea of filming a mini ‘TV’ novella on Lab Safety was born. It just shows that free time is needed for creative juices to flow!

Saturday the 14th July was simply amazing. From learning that Estonians were Vikings too and what that actually meant, to learning some basic Viking skills (axe throwing and long bow shooting), followed by a hike to the magical Saula Springs, canoeing or long boat river excursion (Photo on the left) and finally ancient singing and dancing games (intermingled with dinner) left all feeling physically exhausted but mentally refreshed and ready for the World Cup Final on Sunday (preceded by a guided tour of Tallinn) and needless to say, another week of interactive learning.

 

On July 09, 2018 the 11th MSC Summer School started in the Mectory facility of the Tallinn University of Technology (Tallinn, Estonia).

Four students from the University of Tartu take part in the summer school. Three students are from the EACH programme: Angelique Dafun, Mark Justine Zapanta and Nikola Obradović. One student, Ernesto De Jesus Zapata Flores, is from the AMS programme. (Photo on the left, taken by Mark Justine Zapanta)

As in previous years, a core aim of the Summer school is teaching measurement science (metrology) topics related to analytical chemistry using active learning (“learning by doing”) approaches, as far as possible. Thus, efforts are made for increasing the share of discussions, hands-on work, teamwork. A key activity of the summer school is the contest of student teams (setting up virtual laboratories and interacting with customers), which tests their knowledge and skills in all areas of metrology in chemistry (Photo on the right).

We wish exciting and enjoyable Summer school to all participants!

 

On June 08, 2018 the master thesis defence of the second cohort of the EACH programme took place at Uppsala University! Thi Duong Bui, Anton Roshchin, Duc Khanh Tho Nguyen, Ruixin Huang, Alisija Prakapaitė, Kalliroi Sdougkou, Ajit Jung Karki and Snežana Đorđević successfully defended their master’s theses.

The topics of the theses embraced a wide area of modern biomed- and environmental analytical problems (MS imaging in biomedical research, LC-MS analysis of drugs in different matrices, evaluation of molecular markers for determination of efficiency in drinking water treatment processes, studies of photosynthesis, etc). All of them featured the use of highly sophisticated analytical instrumentation, such as high-resolution MS, imaging systems, etc. This choice of topics is largely directed by the world-famous biomedical analysis research direction at Uppsala University led by prof. Jonas Bergquist.

The average quality level of the theses was found to be very high by the defence committee members.

Congratulations to all of you!

(On photo from the left: Tho, Kalliroi, Alisija, Snežana, Ivo, Jonas, Duong, Ajit, Anton, Ruixin)

 

University of TartuIn a recent ranking of universities in the “New Europe” – the 13 countries that have become EU members since 2004 – carried out by the Times higher Education, the University of Tartu was ranked as No 1!

University of Tartu is followed by the Cyprus University of Technology and University of Cyprus. The Charles University in Prague is ranked fourth.

The list includes 53 universities in total and uses the conventional methodology of THE World University Rankings.

 

U_MOOC_Countries_of_Participants_2018On Tuesday, March 27, 2018 the web course Estimation of Measurement Uncertainty in Chemical Analysis was launched the fifth time as a MOOC (Massive Online Open Course)!

Currently more than 450 participants from 70 countries are registered! As was the case in the previous years, the majority of participants are from analytical laboratories. This once again demonstrates the continuing need for training in measurement uncertainty estimation for practicing analytical chemists.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. As is usual, some developments and improvements have been made to the course material. in particular, the description of course organisatsion was improved; more explanations and examples were added on random and systematic effects within short and long term; the typical requirements for determining repeatability and within-lab reproducibility have been clearly outlined; more explanations on the main principles of modifying a model in a modelling approach have been given, together with an example. Some changes are still in the pipeline.

The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to pass six graded tests and get higher than 50% score from each of tehm. These tests are available to registered participants via the Moodle e-learning platform.

 

LCMS Method Validation online course offered by UTOn Feb 16, 2018 the on-line course (MOOC) LC-MS Method Validation finished successfully.

Altogether 424 (303 last year) people were registered from 71 (61 last year) countries. 236 (224 last year) participants actually started the course (i.e. tried at least one graded test at least once) and out of them 159 (168 last year) successfully completed the course. The overall completion rate was 37% (55% last year). The completion rate of participants who actually started the studies was 67% (75% last year). As can be seen, almost all these statistics are worse than they were the year ago. But then in the last year’s edition both completion rates were all time highest that our group has seen in any of our MOOCs. Thus we probably can be reasonably happy with the completion rates that we have now.

As has been the usual case with our online courses, the questions from the participants were often very interesting, often addressed things that are really important to analysts in their everyday work and in several cases led to improvements in the course. This active participation made teaching this course a great experience also for us, the teachers! The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Autumn 2018.

 

It was the spring of 2011 when I decided to apply to the AMS programme. If I remember correctly, the decision was based on my gut feeling and it was a right one. AMS was related to “perceived” world more than many other programmes in the faculty of science and technology as was also stated in the slogan “bridging the gap between measurements and society”.

5 years after the graduation I am still thankful for taking the journey, and I wanted to remind to myself and to others the three aspects that distinguished the programme from many others.

1) Combination of science and society. If you have the opportunity to combine your own favourite scientific topic (in my case biochemistry and measurement science) with knowledge about requirements related to law, regulations, and standards one has the possibility to give your thoughts a new perspective. It was beneficial for me in the labour market – there are not many people who know both of these aspects simultaneously which makes an AMS graduate a valuable specialist, mostly in private sector, but also in “pure” science. (I am currently working as a quality assurance specialist at Kevelt AS, which is a pharmaceutical manufacturing company in Estonia.)

2) Improvement of communication skills. There was a lot of group work during the studies, which improved my social skills. There is nothing more important than human relations! We had the possibility to study with people from Uzbekistan, Latvia, China, United Kingdom, Ukraine, Jordan, Romania, France, Turkey, and many more. This enabled to study about other cultures, but also how to communicate with people from other cultures.

3) The inspiring (!) lecturers. Their eyes were sparkling when they spoke about their topics so vividly. I believe that people are best at what they really love to do and I aim for the same in my professional career.

I could not thank Prof. Ivo Leito more for such an important contribution to our (students´) lives as leading the AMS programme. He is passionate about what he is teaching and sincerely interested in answering the endless questions, giving us the opportunity to find our better selves in the progress of studies.

 

It is a pleasure to announce that the admission period is again open for the Applied Measurement Science master’s programme!

It is a programme in a field where there is a serious shortage of competent people all over the world. The reason is that the importance of measurements, tests and chemical analyses is constantly increasing. It has recently been claimed, and rightly so, that we are living in a Golden Age of Measurement Science!

It is also the pleasure to let you know that this is the 10th full admission cycle of the AMS programme! Ten years is sufficiently long time to take a brief look back.

During the ten years altogether 55 people have successfully graduated from the AMS programme. Our graduates are enjoying a variety of interesting careers: setting up a contract analytical laboratory, redefining the way people interpret and measure pH, developing new ion sources for mass spectrometry, working as vice-director at National Measurement Institute, Managing IT Infrastructure projects, etc. A longer list of positions held by AMS alumni can be seen in the AMS Career Outlook page.

We have every reason to believe that the row of exciting achievements will continue and we wish you all the success in applying to the programme!

Admission will be open until Mar 15, 2018.

 

Measurements and computations of acidity and basicity of strong and superstrong acids (superacids) and bases in organic solvents is among the core research topics at the UT Chair of Analytical Chemistry. In a recent works (Chem. Sci. 2017, 8, 6964-6973.,    J. Phys. Org. Chem. 2013, 26, 162-170.,    J. Phys. Chem. A 2015, 119, 735–743.,    J. Phys. Chem. A 2016, 120, 3663–3669.) the behavior of a number of acids – ranging from weak to strong and superstrong acids (superacids) was examined in three solvents (water, acetonitrile, 1,2-dichloroethane) and in the gas phase. Acidities (pKa values) of a number of different acids including the well-known superacids trifluoromethanesulfonic (triflic) acid, bis-trifylimide (Tf2NH), etc as well as the carborane superacids (closo-carborane superacids), but also weaker acids (HCl, acetic acid, phenol) etc are examined in the above mentioned solvents. pKa of superacids are not easy to find in literature. Trends of acidity changes on moving from water to the gas phase depnding on the on the nature of the acidity centre and the molecular structure are analyzed. The acidity orders are different in water, MeCN, DCE and the gas phase. In some cases – notably, the hydrohalogenic acids HCl, HBr and HI – the differences are dramatic. These three acids are among the strongest known acids in water but have modest acidity in the gas phase. In contrast, 9‑C6F5‑Octafluorofluorene, a weak acid in water (approximately of the strength of phenol) is quite strong acid in the gas phase, beating any of the hydrohalogenic acids.

It is demonstrated that the decisive factor for behavior of the acids when transferring between different media is the extent of charge delocalization in the anion and that the recently introduced WAPS parameter in spite of its simplicity enables interpretation of the trends in the majority of cases. The acidity data together with references to specific publications are collected in the Table below.

Table of pKa valuesa of acids in different solvents.

 

 

 

 

 

 

Acid

H2O

MeCN

DCEb

GP

GP

 

pKa

pKa

pKa

pKa

GA

 

 

 

 

 

 

Fluoradene

11.1

23.90

12.5

238

324.9

Para-Toluenesulfonamide, 4-CH3-C6H4-SO2-NH2

10.21

26.87

15.6

245

334.0

9‑C6F5‑Octafluorofluorene

10.1

18.88

9.0c

220

300.6

Phenol

10.00

29.14

19.6

251

342.3

(C6F5)2CHCN

9.5

21.10

10.3

229

312.4

C6F5CH(CN)COOEt

5.89

17.75

7.5c

230

313.5

2,4-Dinitrophenol, 2,4-(NO2)2-C6H3OH

4.09

16.66

4.7

226

308.6

(CF3)3COH

5.40

20.55

9.2

238

324.0

Acetic acid, CH3COOH

4.76

23.51

15.5

250

341.1

(4-CF3-C6F4)2CHCN

4.4

16.13

6.0

221

302.1

4-NO2-C6H4-CH(CN)2

2.3

11.61

0.3

220

299.5

Saccharin

1.80

14.57

5.5

232

315.9

Picric acid, 2,4,6-Trinitrophenol

0.40

11.00

0.0

219

299.0

(4-NO2-C6H4-SO2)2NH

<-1

8.19

-3.9c

213

291.1

(CF3SO2)3C6H2OH

-2.0

4.48

-6.6c

208

284.2

(CF3SO2)2NH

<-2

0.3d

-11.9c

210

286.9f

(C2F5SO2)2NH

<-2

-0.10

-12.4c

208

283.7

Cyanoform, (CN)3CH

-5.1

5.1

-6.4c

216

294.8

Triflicid, trifluoromethanesulfonic acid, CF3SO2OH

-14.7g

0.70

-11.3c

215

292.7g

Hydrochloric acid, hydrogen chloride, HCl

-5.9g

10.30

0.2c

241

328.1g

Hydrobromic acid, hydrogen bromide, HBr

-8.8g

5.5

-4.4c

233

318.3g

Sulfuric acid, H2SO4

-9e

8.7d

-2.2c

221

301.2f

Pentacyanopropene

-9.02

-2.80

-15.3c

196

267.2

Hydroiodic acid, hydrogen iodide, HI

-9.5g

2.8

-7.3c

227

309.3g

CB11H12H, unsubstituted closo-Carborane superacid

-25h

-17h

-25f

195

266.5f

B12H12H2, unsubstituted closo-Dodecaborate superacid

-17h

-9h

-17f

196

267.5f

CB11F12H, perfluoro-closo-Carborane superacid

-47h

-39h

-47f

156

212.8f

B12F12H2, perfluoro-closo-Dodecaborate superacid

-45h

-37h

-45f

156

213.4f

 

 

 

 

 

 

a Values from http://dx.doi.org/10.1002/poc.2946 unless noted otherwise. There are numerous comments and details to these values. Please see the original articles for details and comments. GA values are given in kcal mol-1. pKa values in the gas phase are approximate and have been obtained from the GA values by dividing with 1.364 kcal mol-1. b Ion pair pKa values relative to picric acid in 1,2-dichloroethane. c Values from https://doi.org/10.1039/c7sc01424d. d Values from http://dx.doi.org/10.1021/jo101409p. e Value from E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, Sausalito, 2006. f Values from http://dx.doi.org/10.1021/jp506485x. DCE values have been recalculated from absolute to relative, in order to be comparable with the rest. g Values from http://dx.doi.org/10.1021/acs.jpca.6b02253. h Crude estimates from DCE data by considering that bulk water is by 53 kcal mol-1 more basic than bulk DCE and bulk acetonitrile is by 42 kcal mol-1 more basic than bulk DCE.

 

(This post was initially posted on Feb 2, 2013. On Jan 15, 2017 a number values in the table have been replaced by more reliable values from more recent publications. In addition, some compounds were added to the in order to give a fuller picture. The changes concern only the table. The image has not been changed and should be viewed as illustrative)

_END_

This is a Golden Age of Measurement ScienceThe American Chemical Society (the world’s largest scientific society by membership!) has published a document titled Top Ten Trends Driving Science, which summarizes in an intelligent and engaging way the main processes and trends in the contemporary society that drive the scientific research. The explanations are supported by numerous quotes from leading scientists.

Of specific interest for our study programme is the trend No 2: Big data is more essential than ever, is which supported by quote from Jonathan Sweedler, Editor-in-Chief of Analytical Chemistry, stating among other things: This is a Golden Age of Measurement Science!

All the best wishes to all measurement scientists – both chemical and physical – everywhere in the world!

 

Huian_Liu_in_lab_with_GC_instrumentThe master theses of the EACH programme have usually high practical value. However, this does not prevent them to lead to cutting edge scientific results.

The master thesis of Huian Liu – EACH 2017 graduate from the Lyon study track – titled Gas separation by high pressure gas chromatography using monolithic columns is a good example. At its core the thesis was devoted to investigating the behavior of monolithic GC columns in separation of small hydrocarbons for achieving high efficiency and short analysis time – an important issue in oil refineries.

As an additional value, however, it involved experimenting with a novel detector – vacuum UV absorption detector (VUV detector). VUV detector is an emerging detector in GC, enabling simultaneous detection, identification and quantitation of analytes.

In chromatography there are detectors of two response types – concentration-sensitive and mass-sensitive detectors. The response type is important in planning separation, and especially in quantitation. As a result of Huian’s work it was firmly established that VUV detector is a concentration-sensitive, not mass-sensitive detector. This result was considered scientifically so significant that it was accepted for publication by the number one chromatography journal in the world – Journal of Chromatography A (!): Huian Liu, Guy Raffin, Guillaume Trutt, Jérôme Randon J. Chrom. A, 2017, 1530, 171–175. Congratulations to Huian and the team!

Huian is continuing his studies as a PhD student at UCBL.

 

(Photo: Huian Liu in lab with the GC instrument)

 

Monika_Sandy_Rudolf_MarkoThis June and September, the first intake of students graduated successfully from the EACH programme (a sister programme of AMS). See the graduation blogposts at Uppsala, Lyon and Åbo.

Just few months later, 14 out of our 17 fresh graduates have already obtained positions! Some work in the professional/industrial field, some in academic field. Their jobs range from research assistant at a university to project manager at an international corporation. Several have chosen to continue their studies as PhD students. The reflections of some of our graduates on the programme are here:

Marko_Jovanovic

 

Marko, working as project leader in the Industrial Development at Servier (France), writes:
I have spent amazing 2 years in EACH Programme, that represents a perfect balance between studying and travelling. Throughout this period, we had the opportunity to be educated by the experts in the field of Analytical Chemistry. The study track – Industrial Analysis held in France gave me an important insight into the field that I was not so familiar with before I had the opportunity to spend 6 months of the Programme among well-educated and highly-skilled professionals in the company Axel’One, where I was doing my internship. Since Axel’One is a collaborative research platform, I was engaged in several different projects with different companies. This enabled me not only to enrich my knowledge and skills in applied analytical chemistry, but also to significantly expand my professional network. In the end, I was offered a job in France, within a company Servier, as a Project Lead in the Industrial Development.

Monika

 

Monika, working as research assistant at the University of Exeter (United Kingdom), writes:
The Excellence in Analytical Chemistry program was an extremely valuable experience that increased rapidly the course of my career. Taught by highly competent and respected professors it gives the opportunity to gain all the necessary skills in modern analytical techniques. It has been a pleasant, exceptional experience and honor to be a part of EACH!

Monika is simultaneously pursuing doctoral study at Exeter.

 

Sandy

Sandy, now working in the laboratory of the Akademiska sjukhuset hospital in Uppsala, Sweden, writes:
EACH program was so fruitful. It provided me with the skills needed to kick off my career path by providing a wide range of courses delivered by passionate tutors who really care about your success. Moreover, EACH has wonderful activities like a winter school where you can get knowledge and unforgettable social activities. Thanks to everyone who contributes to the success of EACH!

Rudolf

 

 

Rudolf, now a doctoral student at the Örebro University (Sweden), focusing on analytical chemistry of environmental pollutants, adds:
EACH program exposed us to new (study) environments and without doubt provided an invaluable experience. This project offered me a chance to study a specific field in depth. The obtained skills were crucial for pursuing of third cycle studies. All in all, I got more out of the program than I expected in the beginning.

 

 

The success of our graduates is also the success of the EACH programme! This has also been recognised by the European Commission who has decided to extend the funding of Erasmus Mundus scholarships for the EACH programme.

 

Agnes Heering successfully defended her PhD thesis on experimental realization of the unified pH scale

On December 6, 2017 Agnes Heering, an AMS alumna, successfully defended her PhD thesis titled Experimental realization and applications of the unified acidity scale.

Her work literally redefines the way the pH of non-aqueous and mixed aqueous solution is understood and measured. The main focus of the experiments was on validating the measurement approach and measuring the unified pH values, i.e. pHabs values, of HPLC mobile phases (eluents). Her work introduces a conceptually new approach of measuring pH of mixed-solvent liquid chromatography (LC) mobile phases and has been published in the Analytical Chemistry journal: Unified pH Values of Liquid Chromatography Mobile Phases. Anal. Chem. 2015, 87, 2623–2630.

Mobile phase pH is very important in LC, but its correct measurement is not straightforward and all commonly used approaches have deficiencies. The new and fundamentally correct approach developed by Agnes enables direct comparison of acidities of solutions made in different solvents, based on chemical potential of the proton in the solutions.

The work by Agnes represents the first experimental realization of the pHabs concept using differential potentiometric measurement for comparison of the chemical potentials of the proton in different solutions (connected by a salt bridge), together with earlier published reference points for obtaining the pHabs values (referenced to the gas phase) or pHabsH2O values (referenced to the aqueous solution). The liquid junction potentials were estimated in the framework of Izutsu’s three-component method.
She determined the pHabs values for a number of common LC and LC-MS mobile phases and formed a self-consistent pHabs scale. This scale enables for the first time direct comparison of acidities of any LC mobile phases: with different organic additives, different buffer components etc. Agnes has developed a possible experimental protocol of putting this new approach into chromatographic practice and has tested its applicability. She has demonstrated that the ionization behavior of bases (cationic acids) in the mobile phases can be better predicted by using the pHabsH2O values and aqueous pKa values than by using the alternative means of expressing mobile phase acidity. Description of the ionization behavior of acids on the basis of pHabsH2O values is possible if the change of their pKa values with solvent composition change is taken into account.

The defence was successful in every respect. Agnes presented very well, answered questions confidently and convincingly demonstrated to everyone that she is really on top of this whole matter.

(Photo: Agnes Heering and prof. Peeter Burk, the chairman of the defence committee, during defence)

 

EACH_Erasmus_Mundus_JMDWe are glad to announce that the 2018 admission is officially open to the 4th intake of the Excellence in Analytical Chemistry (EACH) Erasmus Mundus Joint Master Degree programme!

EACH is a sister-programme of AMS. EACH is an international two-year joint master degree programme that educates specialists in analytical chemistry well qualified to work in industry (food, pharmaceutical, materials, energy, etc), chemical analysis laboratories (environment, food, health, etc) and research (developing new analysis devices or new analysis methods) worldwide. EACH provides knowledge and practical skills in both fundamental and applied aspects of modern analytical chemistry. Practical internship placement in industry or laboratories is an important part of the training.

The programme is suitable both for students who have finished their bachelor’s studies and want to continue in master’s studies, as well as for working analytical chemistry practitioners wishing to spend couple of years to bring their knowledge and skills to a new level.

The programme features generous scholarships as detailed in the Scholarships and tuition fees page.

The programme is taught by four universities: University of Tartu (UT, coordinator), Estonia; Uppsala University (UU), Sweden; University Claude Bernard Lyon 1 (UCBL), France; and Åbo Akademi University (AAU), Finland. The language of instruction is English, but students will also learn to communicate in one of the languages of the countries involved.

The online application form, admission requirements, deadlines, list of necessary documents, instructions/explanations, as well as contact data for questions are available from the EACH Admission information page.

We wish you all the success in applying!

 

 

JMS_v52_i10_CoverThe Analytical chemistry group at UT recently received a very pleasant and well-deserved recognition: the paper MALDI‐FT‐ICR‐MS for Archaeological Lipid Residue Analysis J. Mass Spectrom. 2017, 52, 689-700 led by research fellow Dr Ester Oras was selected by the editorial board as the cover article for the Oct 2017 issue of the Journal of Mass Spectrometry!

Ester_OrasEster’s research demonstrates that tiny (and to a large extent degraded) food remains on ceramic potsherds, dating back many hundreds of years, can still tell interesting stories about the food practices of our ancestors. The key to these results is clever usage of high-resolution FT-MS with MALDI ion source.

The developed methodology is expected to lay foundation to further studies of ancient food practices in Europe.

 

(Photo on the left: cover of the Oct 2017 issue of the Journal of Mass Spectrometry; photo on the right: Ester Oras)

 

Validation_of_LC-MS_Methods_Online_CourseWe are glad to announce that the second edition of the online course LC-MS Method Validation is open for registration at the address https://sisu.ut.ee/lcms_method_validation/ !

The course will be offered as a Massive Open On-line Course (MOOC) during Nov 28, 2017 – Feb 09, 2018. This is the second edition of this MOOC and, differently from the last year’s edition, the number of participants is not limited this time. So, whoever is interested is welcome to register!

This is a practice-oriented on-line course on validation of analytical methods, specifically using liquid chromatography-mass spectrometry as technique, mostly (but not limited to) using the electrospray (ESI) ion source. The course introduces the main concepts and mathematical apparatus of validation, covers the most important method performance parameters and ways of estimating them. The course is largely based on the recently published two-part tutorial review:

The course contains lectures, practical exercises and numerous tests for self-testing. In spite of being introductory, the course intends to offer sufficient knowledge and skills for carrying out validation for most of the common LC-MS analyses in routine laboratory environment. The real-life analysis situations for which there are either examples or self-tests are for example pesticide analyses in fruits and vegetables, perfluororalkyl acids in water, antibiotics in blood serum, glyphosate and AMPA in surface water, etc. It is important to stress, that for successful validation experience (both in analytical chemistry as such and also specifically in validation) is crucial and this can be acquired only through practice.

The course is free of charge. Receiving digital certificate (in the case of successful completion) is also free of charge. Printed certificate (to be sent by post) is available for a fee of 60 EUR. Registration is possible until the start of the course. The course material is available from the above address all the time and can be used via web by anyone who wishes to improve the knowledge and skills in analytical method validation (especially when using LC-ESI-MS).

 

DSC_0294Mass spectrometry is currently probably the No 1 technique for determining trace-level components in complex (especially biomed-related) mixtures. The key issues in such applications are sample preparation, sample introduction to MS and ionization of components of interest (analytes). Big efforts are continually made to improve any of them.

In his recent development – Sponge sprayMax Hecht, an AMS graduate, now PhD student at UT attempts improvements in all of the above issues. The elegant approach proposed by Max utilizes a volumetric sampling device – a hydrophilic sponge, which after absorbing a predetermined amount of sample (e.g. blood or urine), can be directly used for sample introduction to MS and ionizing the analytes.

The seriousness of the work has been demonstrated by the fact that it was accepted for publication by Analytical Chemistry, the top journal in the field. The published article Sponge Spray – Reaching New Dimensions of Direct Sampling and Analysis by MS is now available from the journal website.

Further developments of this approach may lead e.g. to fast medical diagnosis MS methods that, contrary to the current situation with MS in medicine, could be applied as “bed-side” diagnosis tools in hospitals.

(Photo: Max Hecht working with the sponge spray ion source)

 

Introductory_Meeting_with_EACH_and_AMS_Students_2017This week was the first study week for the new students of Applied Measurement Science and EACH Erasmus Mundus Joint Programme. Altogether 23 students started their studies. The countries of origin of the students are Vietnam, Philippines, Hungary, Serbia, Nepal, China, Hong Kong, Georgia, Romania, Mexico, Indonesia, Venezuela, Pakistan and Turkey. During the introductory meeting an overview of the programme was given (see the slides) and a large number of questions were asked and answered, accompanied by tea/coffee and cake.

We wish successful studies to all new students!

 

EACH_Defence_Lyon_2017On September 7, 2017 the second master thesis defence session in the history of the EACH programme took place at University Claude Bernard Lyon 1 (UCBL)! Aleksandra Lelevic, Gaurav Bhardwaj, Huian Liu, Marko Jovanovic, Oleksandra Burakhovska, Olivier Etebe Nonga, Rudolf Aro and Tetiana Melnyk successfully defended their master’s theses.

Congratulations to all of you!

The topics of the theses embraced a wide area of modern analytical problems (top-down LC-MS proteomics, industrial process control with gas chromatography and Raman spectrometry, accurate moisture measurement in solids, FT-IR analysis of plasticizers in concrete, etc). The majority of the theses were performed in collaboration with industry. This choice of topics and the long-standing industrial collaboration is rooted in the world-famous industrial analysis and control study direction at UCBL led by prof. Jérôme Randon.

At a small cosy drink after the defence students shared their memories of the study period in Lyon. The students were generally very happy about their study track. They praised especially the long and serious placement in industry, which taught them a wide range of useful skills and enabled establishing many contacts. Students also spoke about their future plans. Several of them have already secured jobs/positions.

On photo from the left: Marko, Jerome (academic coordinator at Lyon), Oleksandra, Olivier, Huian, Aleksandra, Rudolf, Gaurav (Tetiana unfortunately had to leave earlier).

 

Anu_Teearu_Kristjan_HaavThis is the range of topics addressed on Aug 16, 2017 as PhD dissertations addressing these topics were defended at UT Institute of Chemistry.

 

Anu_Teearu_presenting_her_PhD_ThesisAnu Teearu (left on the photo) in her thesis titled Development of MALDI-FT-ICR-MS methodology for the analysis of resinous materials addressed the analysis of resinous materials in order to obtain the maximum amount of high-accuracy data from these complex materials. Several important methodological developments (novel calibrants, novel matrix materials, etc) were introduced to MALDI-FT-ICR-MS and its capabilities were assessed during the analysis of three case study samples originating from different types of cultural heritage objects.

 

Kristja_Haav_presenting_his_PhD_ThesisThe central aim of the thesis of Kristjan Haav Quantitative relative equilibrium constants measurements in supramolecular chemistry was development of highly accurate binding constant measurement methods. The key development was measuring relative equilibrium constants instead of absolute ones, which enables eliminating or strongly reducing the influence on several error sources. Kristjan tested the applicability of this approach on two instrumental techniques: UV-vis spectrophotometry and nuclear magnetic resonance spectrometry (NMR). Comparison of the two – completely independent – techniques showed good agreement between the obtained results and thus supports the reliability of both of them.

Kristjan Haav is an alumnus of the Applied Measurement Science programme.

UT_Students_at_ASC_Summer_School_Druskininkai_2017On Saturday 22.07.2017 The MSC Euromaster Summer School 2017 (Druskininkai, Lithuania) finished. Extensive learning programme combined with a lot of fun, meeting new people and sharing experience. The feedback from some of the UT participants is below and it indicates that the Summer School was again a success!

 

Malika_Beishanova

 

 

Malika Beishanova (Kazakhstan) (photo: taking a water sample for analysis):
MSC Summer School was as much useful as it was fun. The study program was intensive and allowed to review and apply what we have learnt at the EACH program in Tartu as well as gain new knowledge and experience. The two weeks were packed with activities and time flew by so fast. The school is truly international, and the atmosphere extremely friendly. I enjoyed a lot!

 

Nguyen Duc Khanh Tho

 

 

Duc Khan Tho Nguyen (Vietnam) (photo: during lab visit):
It was an excellent summer school ever with so much fun and a lot of works as well. It brought me not only great chance to learn more about Metrology in Analytical Chemistry but also interesting practical works. Our door activities and the trips to different laboratories were also the amazing time. Two weeks passed by in a blink of an eye, but it was just a beginning for the lifetime friendship we have made with so many interesting people. I would like to give a big thank to professor Ivo, professor Philip and all lecturers for providing us such a great opportunity.

Thi Duong Bui

 

Thi Duong Bui (Vietnam) (Photo: group work presentation):
MSC- Summer School 2017 in Druskininkai, Lithuania was the unique and special experience for me. It was a precious chance to practice and revise the knowledge that professor Ivo Leito taught us during the Metrology in Chemistry course and to have a deeper understanding in Metrology and Measurement.
The MSC- Summer School 2017 was far better than what I expected with intensive courses, group works, and individual works. Besides that, I had a really good time with friends from different countries from all over the world, we had great excursions to nature, explored Vilnius, Druskininkai, had fun in the Aqua Park, etc.
Thank you for giving me a good opportunity to participate in the Summer School.

Emeka Emecheta

 

 

Emeka Ephraim Emecheta (Nigeria):
I now feel quite confident as an Analytical chemist having fully participated in this practical oriented programme. I achieved beyond my expectations. However, am earnestly greatful to UT for equipping me with the underlying knowledge about Analytical Measurement which apparently gave me strong advantage during this programme.

 

Jay Pee Ona MSC Summer School

 

 

 

 

Jay Pee Oña (Philippines):
I just wanted to tell you how much I appreciated the opportunity to join the Summer school. It has been an amazing learning experience for me. I was able to meet a fellow Filipino there and I was thinking that since we have the materials we could partner up to open the topic of metrology to a wider audience back at home. Again my sincerest thanks for this opportunity!

 

The 2018 MSC Summer school will take place in Estonia.

 

 

MSC_Summer_School_2017During 9-22 July 2017 the 10th MSC Euromaster summer school in Druskinkai, (Lithuania, 130 km from the capital Vilnius).

As in previous years, a core aim of the Summer school is shifting the activities away from the classical lecture-type of teaching by increasing the share of discussions, hands-on work, teamwork. A key activity of the summer school is the contest of student teams (setting up virtual laboratories and interacting with customers), which tests their knowledge and skills in all areas of metrology in chemistry.

Five students from University of Tartu take part in the summer school. Four students are from the EACH programme: Thi Duong Bui, Duc Khan Tho Nguyen, Malika Beishanova, Jay Pee Oña. One student, Emeka Ephraim Emecheta is from the AMS programme.

We wish exciting and enjoyable Summer school to all participants!

(Photo: Philip Taylor)

 

EACH_Master_Thesis_Defence_at_Uppsala_2017On June 26, 2017 the first master thesis defence in the history of the EACH programme took place at Uppsala University! Monika Kish, Cenyi Li, Nikola Radoman, Rabin Neupane, Ru Fang, Sandy Abujrais and Santosh Acharya successfully defended their master’s theses.

Congratulations to all of you!

The topics of the theses embraced a wide area of modern biomed- and environmental analytical problems (LC-MS analysis of aggregates of antibody drug conjugates, quantification of peptide drugs, analysis of dissolved organic matter in natural waters, etc). All of them featured the use of highly sophisticated analytical instrumentation, such as high-resolution MS, liquid-handling robots, etc. This choice of topics is rooted in the world-famous biomedical analysis research direction at Uppsala University led by prof. Jonas Bergquist.

(On photo from the left: Jonas, Sandy, Monika, Ivo, Santosh, Ru, Nikola, Cenyi, Rabin)

 

Leito_LCMS_Validation_EuroMS_2017On 21.06.17 Ivo Leito gave a talk titled Review on validation of liquid chromatography–mass spectrometry methods at the Euro Mass Spectrometry 2017 meeting (London, UK). The talk focused on the two-part Tutorial review on validation of liquid chromatography–mass spectrometry (LC-MS) methods

as well as on the related on-line course (MOOC) LC-MS Method Validation and the ValChrom validation software.

The reception of this talk was one of the warmest during the meeting! Several participants came later to say words of thank for offering such a valuable resource to the LC-MS community. There were also some interesting ideas proposed regarding topics that could be covered in the online course. LC-MS and MiC issues, such as validation, are among core competences of the UT Analytical Chemistry research group. The tutorial review, the on-line course, as well as the ValChrom software together form a nice outcome of joining these competences together.

Concerning the topics of the meeting in general, they were remarkably diverse and not so heavily dominated by biomedical MS as is often the case at mass spectrometry meetings. Interesting presentations were given on gas-phase ion processes, different laser techniques in MS (e.g. for analysis of solids without sample preparation), advanced catalysis studies by MS, LC-ICP-DRC-MS for trace element speciation, the possibility of making a high-end LC-HRMS system an “open access” system within an organization, etc.

 

Irja_Helm_Conducting_Dissolved_Oxygen_Measurement_Training_in_UruguayDuring Jun 12-16, 2017 research fellow Irja Helm from University of Tartu, Institute of Chemistry is conducting a training session on high-accuracy dissolved oxygen measurement in Montevideo (Uruguay). The local organiser of the training is LATU (Laboratorio Tecnológico del Uruguay). There are 8 participants in the training, from Uruguay, Argentina, Ecuador and Peru.

The training is centered around the high-accuracy Winkler titration method of dissolved oxygen concentration measurement that Irja developed during her PhD study: I. Helm, L. Jalukse, I. Leito “A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method” Analytica Chimica Acta 2012, 741, 21–31. The training is interesting in the sense that most of it is carried out in laboratory, where participants do measurements hands-on. The experimental setup was assembled jointly by LATU and by Irja. The practical orientation is well in line with the main purpose of the training – to introduce the high-accuracy Winkler method to the reference laboratories in the participant countries.

The training is organised in the framework of the project „Regional Quality Infrastructure Fund for Biodiversity and Climate Protection in Latin America and the Caribbean“ (VH-No.: 95094) coordinated by PTB (Germany).

(Photo: Irja Helm, on the left, together with training participants in laboratory)

 

University of TartuIn a recent ranking of world universities by QS, one of the world’s leading compilers of university performance ratings, the University of Tartu scored a high 314. place (up by 33 places from the last year) and maintains the highest rank among Estonian and Baltic universities.

Out of the criteria used by QS the improvement was especially strong in the category “Employer reputation”: up by 90 places from the last year. The criteria “Faculty student ratio”, “Number of international students” and “Research” also improved. Considering that there are around 26 000 universities in the world, this result places UT within the best 1.2% universities in the world!

 

Measurement_Uncertainty_MOOC_Successfully_FinishedOn May 18, 2017 the MOOC Estimation of measurement uncertainty in chemical analysis offered by University of Tartu finished successfully.
Eventually altogether 363 people registered (270 in 2014, 489 in 2015, 757 in 2016) from 69 countries (a number of participants joined after the start of the course). The significantly lower number of participants is understandably due to the fact that this year for the first time the certificate on paper was not free of charge. 219 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 148 successfully completed the course (141 in 2014, 169 in 2015, 308 in 2016). The overall completion rate was 41% (52% in 2014, 34% in 2015, 40% in 2016). The completion rate of participants who started the studies was 68% (67% in 2014, 60% in 2015, 67% in 2016). The completion rates of participants who actually started the course are nicely consistent over the years and can be considered very good for a MOOC, especially one that has quite difficult calculation exercises, which need to be done correctly for completing the course.

The participants were very active and asked lots of questions. These were often very much to the point and addressed things that are really important to analysts in their everyday work. The course has several forums (general and by topic) and the overall number of posts to them during the course period reached beyond 300 (!) (overall number of posts, both from participants and from teachers) and the forums are still active and posts are still coming in.

This active participation made teaching this MOOC a great experience also for us, the teachers. The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials, even during the course.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Spring 2018.

 

EACH_AMS_Master_Seminar_Spring_2017Today on Sat 20.05.17 the concluding event of the joint master seminar of the EACH and AMS programmes took place. Its main activities were the feedback session on employability from Prof. Salzer (TU Dresden) and concluding the Group work of helping a water production company to choose, which analytical technique to implement in their lab for analysis of trace elements in drinking water according to the EC directive 98/83/EC Quality of Water Intended for Human Consumption.

Prof. Salzer gave feedback on the CVs and motivation letters that the students wrote according to the guidance given by him earlier this week. He praised the group and gave, on the example of CVs and motivation letters of students, a number of good hints for improvements.

The above mentioned group work has been going on since the beginning of the semester and its essence is that students are divided into groups and each group is a small consultation company that intends to guide a water production plant, as to which trace element technique to implement in their lab, taking into account the amount of water produced, the corresponding required number of samples per year according to 98/83/EC, the cost of the equipment, the running costs, etc. The groups had to justify their recommendations. The groups did well and came up with different suggestions: GFAAS (together with CVAAS), ICP-OES (together with voltammetry) and ICP-MS.
Both of these activities are expected also for future seminars of these prorammes.

 

Pilleriin Peets presenting at Technart 2017

Pilleriin Peets presenting at Technart 2017

On May 02, 2017, the first day of the Technart 2017 conference (Bilbao, Spain) doctoral student Pilleriin Peets from UT Analytical Chemistry group made a presentation Identification and classification of textile fibres using ATR‐FT‐IR spectroscopy with chemometric methods (Photo on the left).

The presentation outlines the recent results by Pilleriin in creating the method for quick, easy and non-destructive classification and semi-quantitative analysis of textiles using ATR-FT-IR spectroscopy combined with chemometric data analysis methods.

She investigated altogether 89 individual textile materials – Wool, Silk, Cotton, Linen, Cellulose acetate, Lyocell/Tenzel, Viscose, Polyester fibre, Polyamide fibre, Polyacrylic fibre, Elastane and their different combinations – and created a discrimination/classification model using principal component analysis (Image on the right).

Classification of textiles by ATR-FT-IR and principal component analysis, PCA (single-fibre model)

Classification of textiles by ATR-FT-IR and principal component analysis, PCA (single-fibre model)

As a side-product of this work, a collection of ATR-FT-IR spectra of textile materials containing one or two different fibres was composed and is deposited in the Supplementary data of the paper that she recently published: P. Peets et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 173, 175–181.

This collection of ATR-FT-IR spectra helps to identify different kind of single- and two-component mixed textiles.

Technart conference series is a premier scientific forum dedicated to applying analytical techniques in the field of art and cultural heritage.

 

 

Awards2017-Website&Facebook-share-1200x630On the 5th of April 2017 the European Commission and Europa Nostra announced the winners of the 2017 European Union Prize for Cultural Heritage / Europa Nostra Awards, Europe’s top honour in the heritage field.

Among the 29 laureates (from 18 countries) is also the Rode Altarpiece Research and Conservation Project (research category) of the high altar of St. Nicholas’ Church in Tallinn.

The project was coordinated by Dr. Hilkka Hiiop from the Art Museum of Estonia. This project also involves several scientists from the chair of analytical chemistry at the University of Tartu, among them Dr. Signe Vahur and her student Krete Saak, and Dr. Riin Rebane, who carried out a thorough material analysis.

The Award Ceremony will be held in Turku, Finland on the 15th of May 2017. During the ceremony, in addition to seven Grand Prix laureates also the Public Choice Award winner will be announced. Everyone has a chance to vote for 3 of their favourite projects, and thereby enter a draw to win a trip for two to Turku and take part in the European Heritage Awards Ceremony on 15th of May. The deadline for casting your votes is the 3rd of May, 2017.

Further information on the project can be found on the web page: Rode Altarpiece in Close-up.

 

CreativeEuropeLogo Europa NostraLogo

 

 

 

 

 

 

 

 

UT_Measurement_Uncertainty_MOOC_Participants_2017On Monday, March 27, 2017 the web course “Estimation of Measurement Uncertainty in Chemical Analysis” was launched the third time as a MOOC (Massive Online Open Course).

Currently 336 participants from 62 countries are registered. The somewhat decreased popularity of the course is most probably due to the fact that starting from this year certificate of completion on paper is not free of charge (digital certificate is still free). Given this change, we are actually surprised that we still have so many participants! Image on the left shows the countries where the participants come from. As in the previous years, the majority of participants are from analytical laboratories, once again demonstrating the continuing need for training in measurement uncertainty estimation in analytical chemistry.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. Some developments and improvements have been made to the course material, in particular, better description of course organisatsion a self-test on sophisticated uncertainty estimation taking numerically into account the limited selectivity of the technique (potentiometry with ion-selective electrode). Some changes are still in the pipeline. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to take six graded tests and get higher than 50% score. These tests are available to registered participants via the Moodle e-learning platform.

 

Measurement_Uncertainty_Value_Error_EtcThe online course Estimation of measurement uncertainty in chemical analysis will start its 4th edition on Monday, Mar 27, 2017. 300 participants have already been registered from 58 countries. Registration is still open and all people interested to learn this important topic are welcome to participate!

The registration link is available from the course website: https://sisu.ut.ee/measurement/uncertainty

 

LCMS Method Validation online course offered by UTOn Feb 16, 2017 the MOOC LC-MS Method Validation finished successfully.
Altogether 303 people were registered from 61 countries. 224 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 168 successfully completed the course. The overall completion rate was 55%. The completion rate of participants who started the studies was 75%. Both completion rates are all time highest that our group has seen in our MOOCs!

The questions from the participants were often very interesting, often addressed things that are really important to analysts in their everyday work and in several cases led to improvements in the course. This active participation made teaching this MOOC a great experience also for us, the teachers! The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Autumn 2017.

 

Pilleriin_PeetsAmong the analytical chemistry research directions at UT are studies of materials, especially materials with artistic and/or historic relevance. Textiles have a prominent place among these materials and the leading force of textile analysis in our group is PhD student Pilleriin Peets.

We have the pleasure to announce that her master’s thesis defended in June 2016 “Method development for textile dye analysis on the example of red dyes” was awarded with the 1st prize in the Estonian National Contest for University Students supported by Estonian Research Council. Congratulations, Pilleriin!
This very interesting and challenging master’s thesis involved development of methodologies using complementary techniques – FT-ICR-MS with ESI and MALDI sources, LC-QQQ-MS, SEM-EDS – for thoroughgoing investigation of composition of red dyes.

Natural dyes (extracted from plants and insects) are complex mixtures of sophisticated organic compounds and their chemical composition is still not fully known. Dyes can be divided into different groups (antraquinones, flavonoids etc) but within a group they can be quite similar. In order to fix dyes on fabrics mordants (alum, tannic acid etc) are commonly used. Identifying dyes and mordants in textiles is challenging: samples are very small, analyte concentrations are low, objects consist of many components (incl. impurities) and their decomposition products. So, accurate methods that can work with small amounts of sample and very low analyte contents in samples, are still needed.

Pilleriin_Peets_taking_textile_samplesDuring her master’s studies Pilleriin Peets managed to overcome all these difficulties and developed a useful methodology for dye analysis. At first Pilleriin collected different red dyes (madder, cochineal etc), dyed pure wool pieces and then extracted the dyes from dyed wool. During dyeing she adjusted different recipes and developed suitable dyeing procedure. After that she analysed all these dye standard solutions and fibre extracts, using HPLC-QQQ-MS, ESI- and MALDI-FT-ICR-MS methods and developed a suitable measurement methodology for every dye. Additionally, different mordants were analysed from known mordanted samples and unknown real samples using SEM-EDS. The developed methodology was applied to real samples from the Estonian National Museum and private collections (photo on the right: Pilleriin taking textile samples at the Estonian National Museum).

These developed methodologies are right now being extended to the analysis of other colours and dyes: Pillerin continues this investigation during her PhD studies and in the future there will be coming much more interesting research developments in this topic.

Pilleriin started with serious scientific research already in the bachelor’s studies: she developed an approach of classification of single- and two-component textile materials using ATR-FT-IR spectra and chemometric methods, principal component analysis (PCA) and discriminant analysis on the basis of altogether 89 textile samples belonging to 26 different types (11 one- and 15 two-component textiles). This work has been published in Spectrochimica Acta Part A 2017, 173, 175-181.

 

each-students-meeting-prof-fraser-stoddartOn Monday 12.12.2016 the 2nd year EACH students studying at Uppsala had the wonderful opportunity to meet Sir J. Fraser Stoddart, one of the three 2016 Chemistry Nobel prize laureates. The 2016 Chemistry Nobel prize was awarded for the contributions to design and synthesis of molecular machines.

On the photo Prof. Stoddart is in the middle of the second row. In the first row on the right is prof. Jonas Bergquist (the EACH coordinator at Uppsala) who organized the meeting.

 

UT_LC_MS_Validation_MOOC_Participants_2016On Monday, November 28, 2016 the web course LC-MS Method Validation was launched for the first time as a MOOC (Massive Online Open Course). There are 301 registered participants from 61 countries, ranging from Vietnam to Peru and from Norway to Zambia. Image on the left shows the countries where the participants come from.

This is a practice-oriented on-line course on validation of analytical methods, specifically using LC-MS as technique. The course introduces the main concepts and mathematical apparatus of validation, covers the most important method performance parameters and ways of estimating them. The course follows the tradition set by the course Estimation of Measurement Uncertainty in Chemical Analysis launched in 2014. Differently from the uncertainty course, the LC-MS validation course is delivered by a team of 8 teachers, each with their own specific area of competence. This way it is expected to offer the best possible knowledge in the different subtopics of analytical method validation.

The full course material is accessible from the web page https://sisu.ut.ee/lcms_method_validation/. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged calculation exercises). In order to pass the course the registered participants have to take all tests and get higher than 50% score from each of them. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from the University of Tartu.

It is planned to run this course as MOOC again in autumn 2017.

(Image: Wikimedia Commons)

 

EACH_Erasmus_Mundus_JMDWe are glad to announce that the 2017 admission is officially open to the Excellence in Analytical Chemistry (EACH) Erasmus Mundus Joint Master Degree programme!

This international two-year joint master degree programme educates specialists in analytical chemistry well qualified to work in industry (food, pharmaceutical, materials, energy, etc) and chemical analysis laboratories (environment, food, health, etc) worldwide. EACH provides knowledge and practical skills in both fundamental and applied aspects of modern analytical chemistry. Practical internship placement in industry or laboratories is an important part of the training.

The programme is suitable both for students who have finished their bachelor’s studies and want to continue in master’s studies, as well as for working analytical chemistry practitioners wishing to spend couple of years to bring their knowledge and skills to a new level.

The programme features generous scholarships as detailed in the Scholarships and tuition fees page.

The programme is taught by four universities: University of Tartu (UT, coordinator), Estonia; Uppsala University (UU), Sweden; University Claude Bernard Lyon 1 (UCBL), France; and Åbo Akademi University (AAU), Finland. The language of instruction is English, but students will also learn to communicate in one of the languages of the countries involved.

The online application form, admission requirements, deadlines, list of necessary documents, instructions/explanations, as well as contact data for questions are available from the EACH Admission information page.

 

 

esikaas_2We are glad to announce the online course LC-MS Method Validation!

It has been set up at University of Tartu during 2015-2016 and its version 1 is now accessible from the address https://sisu.ut.ee/lcms_method_validation/

The course will be offered as a Massive Open On-line Course (MOOC) during Nov 28, 2016 – Feb 09, 2017 and it is now open for registration via the above address. The course is free of charge. This is the first edition of this MOOC and it will be offered to a limited number of participants.

This is a practice-oriented on-line course on validation of analytical methods, specifically using liquid chromatography-mass spectrometry as technique, mostly (but not limited to) using the electrospray (ESI) ion source. The course introduces the main concepts and mathematical apparatus of validation, covers the most important method performance parameters and ways of estimating them. The course is largely based on the recently published two-part tutorial review:

The course contains lectures, practical exercises and numerous tests for self-testing. In spite of being introductory, the course intends to offer sufficient knowledge and skills for carrying out validation for most of the common LC-MS analyses in routine laboratory environment. The real-life analysis situations for which there are either examples or self-tests are for example pesticide analyses in fruits and vegetables, perfluororalkyl acids in water, antibiotics in blood serum, glyphosate and AMPA in surface water, etc. It is important to stress, that for successful validation experience (both in analytical chemistry as such and also specifically in validation) is crucial and this can be acquired only through practice.

This course material is available from the above address all the time and can be used via web by anyone who wishes to improve the knowledge and skills in analytical method validation (especially when using LC-ESI-MS).

 

Leito_CroLab_2016On Oct 20, 2016 Ivo Leito gave presentation titled Education Activities in Metrology in Chemistry in Vinkovci (Croatia) at the conference Laboratory Competence 2016 organized by CroLab – the Croatian Association of Laboratories.

The presentation contains information about the Applied Measurement Science and Excellence in Analytical Chemistry master’s programmes et University of Tartu, about the international consortium Measurement Science in Chemistry, about the on-line course Estimation of Measurement Uncertainty in Chemical Analysis and the new on-line course LC/MS Method Validation. Also the recently published tutorial reviews were touched upon.

The presentation led to a number of new contacts and invitation to next events. Participants were impressed by the breadth of activities as well as by the very strong team working on these things at UT. In addition, Ivo Leito was interviewed by the Croatian national television.

 

EcoBalt_2016_Group_PhotoOn Wednesday 12.10.16 the EcoBalt 2016 conference – first time organized in Tartu, Estonia – finished successfully! 42 oral talks and 43 posters were offered to the more than 150 participants from more than 25 countries. The conference featured two tutorial sessions – on measurement uncertainty and on validation of LC/MS analytical methods. The mesmerizing introductory multimedia presentation by Sven Zacek about Estonian nature and the stunning closure talk about “impossible things” by Meelika Hirmo from Let’s Do It! World were certainly among the highlights of the conference.

A number of AMS and EACH students participated in the conference.

We thank all the participants for making EcoBalt 2016 a success!

Full information about the conference, including the conference programme and EcoBalt 2016 Book of Abstracts can be found at the EcoBalt 2016 website.

EcoBalt 2016 was organized by the University of Tartu with Tallinn University of Technology and Estonian Environmental Research Centre.

EcoBalt2016 received financial support from a number of sources. We thank all supporters! Without their help the conference would not have been possible.

  • EU_Regional_Development_Fund_horizontalFor organisation of international events and conferences from Estonian Ministry of Economic Affairs and Infrastructure in cooperation with the Enterprise Estonia tourism development centre from funding provided by the European Union Regional Development Fund.
  • kik_eng_logo_horizontalSecond day of the conference was fully supported by Environmental Investment Centre.
  • The following companies supported the conference: LaboChema, Ramboll, Ordior, Quantum, SyntPot, HNK, Waters, Armgate and LanLab.

 

eesti-keskkonnauuringute-keskus_riidekoti_kujundusIn few hours the EcoBalt 2016 conference will start, for the first time in Tartu!

The EcoBalt conference series has traditions dating back to 1993 and has been envisaged from the beginning as a Baltic event. Nevertheless, this is the first time that it takes place in Estonia (previously only in Latvia and Lithuania).

We are very glad to welcome more than 160 registered participants from more than 25 countries, making it a truly international conference! The nearby countries are represented as well as e.g. Philippines, Mexico, India, China, Nepal, Sri Lanka, … A number of AMS students also participate in EcoBalt 2016!

The EcoBalt 2016 programme is very diverse: topics ranging from ultramodern environmental analytical techniques to environmental management and from nanoparticles in environment to global climate change.

EcoBalt 2016 is organised jointly by UT in collaboration with TTU and Estonian Environmental Research Centre in the framework of the ECAC consortium.

 

mooc_vs_traditional_courses_in_chemistryOn Sept 13, 2016 Ivo Leito gave a presentation Using MOOCs for teaching analytical chemistry: experience at University of Tartu at the EuCheMS 2016 Congress (Seville, Spain).

The presentation outlined the contents and organisation of the material in the on-line course Estimation of measurement uncertainty in chemical analysis, the different ways of using the on-line material (for independent learning, for self-testing, as an information source and as a basis for running as a MOOC) and the experience of running it as a MOOC (Massive Open Online Course) at University of Tartu during the three MOOC editions in 2014 to 2016. An important part of the presentation was devoted to analyzing the pros and cons of MOOCs as a way of teaching and in particular as a way of teaching analytical chemistry (or its subdisciplines). It was concluded that MOOCs do have advantages, especially if compared to short training courses for practitioners. The talk created quite some interest and discussions after the session.

Detailed discussion of this topic has been published: I. Leito, I. Helm, L. Jalukse. Anal Bioanal Chem 2015, 407, 1277–1281.
The course material is available for all interested people from https://sisu.ut.ee/measurement/

Preparation of a new MOOC course Validation of LC-MS analysis methods is currently underway by the group of analytical chemistry. The materials of the LC-MS validation course are nearing completion and are already available online.

 

EACH_and_AMS_Students_UT_2016This week was the first study week for the new Applied Measurement Science students and EACH Erasmus Mundus. Altogether 19 students started their studies. The countries of origin of the students are Vietnam, Philippines, Russia, Serbia, Kazakhstan, China, Sri Lanka, Nepal, Nigeria, Mexico, Lithuania, Tunisia, Pakistan and Greece. During the introductory meeting an overview of the programme was given (see the slides) and a large number of questions were asked and answered, accompanied by tea/coffee and cake.

We wish successful studies to all new students!

 

Asko_Laaniste_Hanno_EvardThese very important (and up to now not completely solved) questions got a lot clearer on Aug 31, 2016 as PhD dissertations addressing these topics were defended at UT Institute of Chemistry.

Asko Laaniste (left on the photo) in his thesis titled Comparison and optimisation of novel mass spectrometry ionisation sources has carried out an extensive experimental comparison of 4 different LC-MS ion sources operated altogether in 7 different modes in the analysis of 41 different pesticides. The obtained large pool of data was used for comparing the sources in terms of matrix effects, limit of detection (LoD), repeatability, linearity, signal to noise ratio (S/N) and sensitivity.

Asko demonstrated that for low levels of analytes in most cases the conventional ESI is the ion source of choice (provided the analytes are ionizable with ESI), while dopant-assisted APPI is a good alternative if low detection limits are not required and if compounds not ionizable with ESI are determined.

This is currently the most comprehensive comparison of this type available and Asko’s thesis (and the forthcoming publication) could serve as a “desk manual“ for LC-MS practitioners on choosing ion source for LC-MS analysis.

The central question of Hanno Evard’s thesis Estimating limit of detection for mass spectrometric analysis methods was: what is the best way of evaluating detection limit (LoD) of an analytical method? There are around ten widespread approaches for LoD in the literature (plus less well known ones) and the LoD values obtained using different approaches can differ by up to 10 times.

Hanno (right on the photo) carried out comprehensive analysis of the literature approaches and combined that with extensive experiments. As a result he was able to propose and convincingly justify one approach, which has merits over others and should be used for evaluation of LoD.

A two-part tutorial review on this topic is in press with the Analytica Chimica Acta journal and we expect that it will be for analytical chemists the definitive source on LoD estimation for years to come.

Hanno Evard is an alumnus of the AMS programme.

 

Our warmest congratulations to Asko and Hanno!

 

University of TartuIn a recent ranking of Eastern European and Central Asian universities by QS, one of the world’s leading compilers of university performance ratings, the University of Tartu scored a high fifth place, maintaining the highest rank among Estonian and Baltic universities.

The winner in this ranking is the Lomonosov Moscow State University, followed by Novosibirsk University, and Saint Petersburg State University. Charles University in Prague comes fourth.

The strengths of University of Tartu are its academic reputation (98/100), citations per paper (96.9/100), papers per faculty (96.2/100) and web impact (93.8/100).

The position of UT in the worldwide ranking lists has during the recent years consistently become better and UT now ranks generally among the top 500 universities in the world. According to the QS World University Ranking University of Tartu is at position 400. According to the Times Higher Education Ranking University of Tartu is in the range 351-400.

 

 

EACH_Students_at_MSC_Summer_School_2016On Friday 22.07.2016 The MSC Euromaster Summer School 2016 finished. The feedback from some of the UT participants indicates that it was again a success! They shared their experience:

 

TetianaTetiana Melnyk (Ukraine):
I want to say a big big thank you for the opportunity to go to summer school! It was a great experience, and I met a lot of new people. If you ask me to evaluate, I would say it was excellent!

SantoshSantosh Raman Acharya (Nepal):
Summer school was amazing experience for me. The most challenging and exciting part was to work with people from all over the world with different experience in their respective fields. We made a lot of presentations, lab works and audit practice in the company “Umicore”, and the most inspiring moment was to meet with Sander Sannik at the summer school. In overall it was a full package of learning with fun!

AleksandraAleksandra Lelevic (Montenegro):
I have to say that I don’t remember when I had so much fun and when I have been so tired all at the same time :-)! It was a very intensive course that brought together a very interesting group of people and I am very happy I got the opportunity to meet closely many of them. I particularly liked the practical part of the school where we had to carry out analysis ourselves and work out a way to get along and think of good solutions together as a group.

RabinRabin Neupane (Nepal):
Summer school was a perfect platform where I got challenges as a Analytical Chemist and develop an ability to cope with those challenges. I must thank Ivo for the lectures in Meteorology in Chemistry at UT, which was foundation for me to be confident and perform well in summer school. Besides lectures in summer school, I would miss the bar, friends from different corners of world, those dances and karaoke we had at end of each day in summer school. It has been a life time experience. Thank you Ivo for such an opportunity.

 

The 2017 MSC Summer school will take place in Lithuania.

 

UT_Participants_at_MSC_Summer_School_2016This week saw the start (on Mon, Jul 11, 2016) of the 9th MSC Euromaster summer school in Malle (near Antwerpen, Belgium).

As in previous years, a core aim of the Summer school is shifting the activities away from the classical lecture-type of teaching by increasing the share of discussions, hands-on work, teamwork. A key activity of the summer school is the contest of student teams (setting up virtual laboratories and interacting with customers), which tests their knowledge and skills in all areas of metrology in chemistry.

Four students from University of Tartu (EACH programme) take part in the summer school: Tetiana Melnyk, Aleksandra Lelevic, Rabin Neupane and Santosh Raman Acharya (on the photo, left to right).

We wish exciting and enjoyable Summer school to all participants!

(Photo: Irja Helm)

 

AMS_Master_Thesis_Defence_2016Today (June 06, 2016) 11 AMS master students successfully defended their master’s theses. Congratulations to all of you!

Photo on the left, from left to right: Xiaozhou Ye, Martinš Jansons, Oluwamayowa Sharon Sanni, Sylvestre Tc Pagkeu, Sofia Raquel Alves Oliveira, Stanislav Andres, Theofanis Panagiotopoulos, Max Hecht, Sagar Ramanbhai Patel, Rūta Veigure, Francis Gyakwaa.

As is usual for AMS the topics of the theses were diverse ranging from artificial photosynthesis to measurements in biochemistry and from determination of dangerous radionuclides to calibration of hygrometers. The full list of the defenders and their thesis titles is below. This list demonstrates well the ubiquitous nature of measurement science. The scientific/technological quality of the theses was high: a number of research papers are planned to be published on the basis of the theses and the results of one of them will be patented.Ruta Veigure discussing with the opponent AMS_Master_Theses_Defence_2016 (Photo on the right: Rūta Veigure discussing with the opponent)

 

Full list of students and thesis topics:

  • Sylvestre Tc Pagkeu, Joint application of an ARC-probe and antibody in homogeneous TR-FRET assay for determination of the concentration of protein kinase Pim2
  • Max Hecht, Investigations of chlorophyll interactions in Water Soluble Chlorophyll Binding Protein
  • Sofia Raquel Alves Oliveira, Role of the stringent response in antibiotic tolerance of Escherichia coli
  • Rūta Veigure, Development and validation of UHPLC-MS/MS method for analysis of sedative drugs and their metabolites in blood plasma
  • Oluwamayowa Sharon Sanni, Development and validation of gamma spectrometric analysis procedure using a high purity Germanium detector
  • Sagar Ramanbhai Patel, Development of foreign body detection methodology in industrial food preparation process
  • Theofanis Panagiotopoulos, Calibration of hygrometers at fluctuating and transient conditions
  • Francis Gyakwaa, Validation of alpha spectrometric analytical measurement procedure for the determination of Polonium-210 (210Po) in environmental samples
  • Xiaozhou Ye, Relationships between Environmental Factors and the Growth of Above-Ground Biomass in Boreal Forest
  • Martinš Jansons, Characterization of natural sedimentary dolomite and limestone reference materials from Geological Survey of Estonia using LA-ICP-MS
  • Stanislav Andres, Development of method for preliminary identification of cyclic dinucleotides in bacterial cultures

 

UT_Measurement_Uncertainty_MOOC_Participants_2016On May 17, 2016 the MOOC Estimation of measurement uncertainty in chemical analysis offered by University of Tartu finished successfully.
Alltogether 757 people registered (270 in 2014, 489 in 2015) from 85 countries. 455 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 308 successfully completed the course (169 in 2015, 141 in 2014). The overall completion rate was 40% (52% in 2014, 34% in 2015). The completion rate of participants who started the studies was 67% (67% in 2014, 60% in 2015). These completion rates can be considered very good for a MOOC, especially one that has quite difficult calculation exercises, which need to be done correctly for completing the course.

The participants were very active and asked lots of questions. These were often very much to the point and addressed things that are really important to analysts in their everyday work. The course had several forums (general and by topic) and the overall number of posts to them during the course period reached beyond 500! (overall number of posts, both from participants and from teachers)

This active participation made teaching this MOOC a great experience also for us, the teachers. The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Spring 2017.

 

(Image: Wikimedia Commons)

 

UT100412AT462The series of works from the UT Analytical chemistry group on measuring and predicting ionization efficiency in the electrospray (ESI) ion source of MS and LC-MS has reached a new milestone: for the first time an ionization efficiency scale for the atmospheric pressure chemical ionization (APCI) source has been established.

The work led by Dr Riin Rebane (photo on the left) resulted in APCI ionization efficiency scale containing 40 compounds with widely ranging chemical and physical properties and spanning 5 orders of magnitude of ionization efficiency. Analysis of the resulting data challenges the common knowledge about APCI as ionization method. Contrary to the common knowledge, ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source and most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. These findings suggest that the atmospheric pressure chemical ionization mechanism can be more complex than generally assumed and most probably several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed.

See the original publication Anal. Chem. 2016, 88, 3435-3439 for more information.

(Photo: Andres Tennus)

 

Career_Seminar_EACHA key ability in today’s world is applying for a job. In order to be successful, writing CV and job application is of critical importance. For this reason these topics are included in the EACH/AMS programme.

On Wednesday 13.04.2016 Ms Heleri Olo from the UT Career service conducted a seminar (jointly for EACH and AMS students) on the “DO-s and DON’T-s” of writing a CV and motivation letter when applying for a job.

This seminar was the follow-up of the Employment/career session conducted by prof. Reiner Salzer at the EACH 2016 Winter School. At the winter school all participants were given a task to find a job offer at the RSC Jobs website and compose suitable CV and motivation letter. The CVs and motivation letters of students were then analysed both by prof. Salzer and by the UT Career service experts and the feedback was given by Heleri during the seminar.

Students found the whole exercise very useful. The employment-related session was one of the most liked sessions at the Winter school.

 

EC4LE_TrainMiCOn 9-11 June, 2016 a Master Class on Quality Assurance in Analytical Measurements, jointly organized by the European Centre for Laboratory Excellence and the TrainMiC training community.

There are still some places available, so be quick and check it out at www.ec4le.eu/program

This Master Class targets those teaching or training in the area of metrology and quality assurance in chemical analysis (Metrology in Chemictry, MiC), either regularly (as teacher) or occasionally (e.g. adult learning). The aim of the master class is to:

  • Keep up to date trainers’ technical knowledge, expertise and competence through a continuing professional development course
  • Enhance training effectiveness and efficiency by raising knowledge on adult learning strategies and active learning theories through workshop and discussion
  • Establish a long term community of practice

It will also be an opportunity for you to network with the TrainMiC® and EC4LE communities and participate in the TrainMiC® convention as well as celebrate its 15th Anniversary. You can also join to brainstorm about the future. Who knows, if you are a newcomer, you might be interested in joining one of these communities?

We look forward to seeing you in Zagreb in June 2016! We promise you an educational experience unlike any other!

 

UT_Measurement_Uncertainty_MOOC_Participants_2016On Monday, March 28, 2016 the web course “Estimation of Measurement Uncertainty in Chemical Analysis” was launched the third time as a MOOC (Massive Online Open Course).

The popularity of the course is this year somewhat higher than it was in 2014 and 2015: 744 participants from 85 countries (ranging from Bahama to Vietnam and from Zambia to Canada) have registered! (in 2014: 270 participants, in 2015: 400+) Image on the left shows the countries where the participants come from. As in the previous years, the majority of participants are from analytical laboratories, once again demonstrating the continuing need for training in measurement uncertainty estimation in analytical chemistry.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. Some developments and improvements have been made to the course material, in particular, some more self-tests ave been added. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to take six graded tests and get higher than 50% score. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from the University of Tartu.

It is planned to run this course as MOOC again in Spring 2017.

(Image: Wikimedia Commons)

 

Measurement_Uncertainty_MOOC_Course_UTThe third edition of the MOOC (Massive Open Online Course) Estimation of Measurement Uncertainty in Chemical Analysis will be running during Mar 28 – May 8, 2016. Registration is open!

We currently have more than 250 registered participants from more than 50 countries.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to take six graded tests and get higher than 50% score. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from University of Tartu.

You are welcome to distribute this message to potentially interested people!

 

EACH_Winter_School_2016_Dissolved_oxygen_intercomparisonThe second day of the EACH Winter school was full of excitement.
The key event of the second day was dissolved oxygen intercomparison between the student teams. The samples were water samples from the nearby lake Pühajärv. The student teams used optical oxygen sensors (based on luminescence), see the photo on the left. The seriousness of the intercomparison is underpinned by the independent reference values determined using the highly accurate primary Winkler titration procedure (developed by Irja Helm in her PhD thesis).
EACH_Winter_School_2016_Group_PhotoThe results of the intercomparison will be summarized at the closing of the Winter school.

On the right you can see the group photo (Lake pühajärv is behind the trees) taken right after the lunch and followed by a spontaneous snow fight (photo on the left) where the “African team” (Ime and Olivier, in the centre) performed stunningly well in comparison to the Nordic snow fighters!

EACH_Winter_School_2016_Snow_FightThe consortium committee spent most of the day interviewing students and discussing (including negotiations with university officials about maximum possible numbers of students) for distributing students to study tracks. The day ended with the long-awaited announcement that it will be possible to grant every student the preferred study track!

EACH_Winter_School_2016_Students_of_the_Uppsala_Study_trackOn the photo on the right you can see prof. Bergquist and his team taking pictures of the students selected for the Uppsala study track.

 

 

 

 

EACH_Winter_School_2016_LectureToday, on Jan 25, 2016, the first Winter School of the EACH programme started in Pühajärve (Estonia). Altogether 24 students from 17 countries participate (besides EACH students, also some other international students from Tartu have been invited, most of them from the AMS programme). Leading European analytical chemistry experts act as teachers and supervisors at the Winter School.

The Winter School offers a diverse set of activities to the participants. There are lectures on advanced analytical chemistry topics, tasks on data analysis and choosing analytical strategies. One of the sessions is specifically dedicated to employment opportunities of analytical chemists. The most ambitious part, a full-fledged in situ intercomparison measurement (between student teams) of dissolved oxygen concentration in lake water, will be carried out on the second day of the Winter School.

The intense working is counterbalanced by winter sports activities and relaxing in spa/swimming pool.

Full information about the Winter School activities is available at http://each.ut.ee/EACH/each-winter-school/

 

Random_and_Systematic_Effects_TimelineIn a recent edition of the premier journal devoted to quality and metrology in chemistry Accreditation and Quality Assurance Ivo Leito has attempted to express in very simple terms the essence of Metrology in Chemistry. In the article Accred. Qual. Assur. 2015, 20, 229–231 he arrived at three main recommendations:

1. Whenever possible, comparisons with reference values should be carried out. The reference values can be realized in different ways: Certified reference materials (CRMs), Laboratory reference materials (LRMs), Measurements with reference methods, etc.

2. Data on stable samples should be collected over long time periods (e.g. as the X chart), in order to evaluate as many sources of variability in the analysis method, as possible. The longer the time period, the more systematic effects will become random and thus easier to evaluate (more on this topic can be found in a recent review on bias).

3. “Do not stop there!”, meaning that the above mentioned activities should run in a lab on a continuous basis.

As a conclusion, it can be said that constant improvement is the key to reliable analytical results.

 

LogoWe are glad to announce that registration for the EcoBalt 2016 conference has been officially opened today! Please see the address http://vana.akki.ut.ee/ecobalt-2016

The First Circular contains all the important information and is available from the above page.

EcoBalt 2016 is an international research conference that will address all scientific and technological developments in the field of environment and its protection: air, water, soil, contamination assessment and options for its reduction, environmentally friendly technologies and products, recycling, biodiversity, environmental education, etc. The conference will be held on 9.-12. October 2016 in Tartu, Estonia, in the Dorpat conference centre.

EcoBalt 2016 is organised by the Estonian Center of Analytical Chemistry. You are welcome to contact us (Dr. Riin Rebane, riin.rebane@ut.ee) with any questions or requests that you have.

 

IsoFood Hg Training_Draft Programme_2.11.2015_Page_1
During Nov 25-27, 2015 the training seminar “Quality assurance for Hg measurements in food and environmental samples” was held at the Jožef Stefan Institute in Ljubljana. Ivo Leito participated as a teacher and conducted discussion sessions Validation data (Reproducibility, recovery, etc) and their meaning, Measurement uncertainty and Traceability: what it is and how to demonstrate it?.

Ivo_Leito_teaching_metrology_in_chemistry_in_Ljubljana_Nov_2015The seminar was highly successful – there was in-depth discussion during each of the sessions and the discussions continued during coffee breaks. The measurement uncertainty session featured a full-fledged uncertainty estimation (contaminant determination by LC-MS), which the participants carried out themselves on laptop computers that they had brought with them.

It is expected that the collaboration between UT and Jožef Stefan Institute (and other research centres in the region) will continue and deepen.

 

Analuutilise_Keemia_Kvaliteedi_Infrastruktuur_ENGOn Oct 14, 2015 Tallinn University of Technology and University of Tartu jointly organized the first cooperation festival “Right time, right place” (“Õigel ajal õiges kohas”), venue: Mektory innovation centre, Tallinn).

The festival aimed first of all at intensifying collaboration between Estonian industry and academia, but also between different research teams of the two universities. The interest in the event was so large that at some point pre-registration was stopped because of too many participants. The participant number who eventually participated in the event reached 430.

The analytical chemistry research group of UT was also present at the festival and promoted the ECAC distributed interdisciplinary research infrastructure. ECAC unites the competence and analytical capabilities of three prominent organizations in Estonia: University of Tartu, Tallinn University of Technology and the Estonian Environmental Research Centre and offers access to analytical instruments as well as services and collaboration both to academia and industry. Ivo Leito made a presentation about the analytical possibilities of ECAC that can be of interest to the Industry: Analüütilise Keemia Kvaliteedi Infrastruktuur (AKKI) (in Estonian).

Signe Vahur with ATR-FT-IR Instrument at Cooperation Festival Oct 2015

Signe Vahur with ATR-FT-IR Instrument at Cooperation Festival Oct 2015

In addition, we demonstrated our FT-IR analysis capability and had a fully operational ATR-FT-IR instrument with us (image on the right), enabling any interested person to run material analysis of either the samples that we brought with us or almost anything that could be found on site. People were very interested in the analysis of wood coatings, different polymers and also of their own clothes (e.g. for determining whether a necktie is made of silk or polyester) and research fellow Signe Vahur – our main FT-IR expert – was busy all the day to record and interpret spectra and give explanations to interested people.

This possibility of instant ATR-FT-IR analysis proved to be the most popular topic in the Chemistry thematic room of the festival and attracted much attention from people with very different backgrounds. This is not surprising – this instrumental method has been in the core of a number of research collaboration projects with industry in the past and is expected to be so also in the future.

EACH and AMS students strongly benefit from the expertise and instrumentation that has been accumulated by ECAC (AKKI). Several of the EACH/AMS teachers are directly involved in ECAC and a number of ECAC’s instruments are used in teaching and thesis work.

 

Leito_Measurement_Uncertainty_MOOC_Euroanalysis_2015On Sept 07, 2015 Ivo Leito gave a presentation Using MOOCs for teaching analytical chemistry: experience at University of Tartu at the Euroanalysis XVIII (Bordeaux, France).

The presentation outlined the contents and organisation of the material in the on-line course Estimation of measurement uncertainty in chemical analysis, the ways of using it (for independent learning, for self-testing, as an information source and as a basis for running as a MOOC) and the experience of running it as a MOOC (Massive Open Online Course) at University of Tartu in spring 2014 and 2015. Part of the presentation was devoted to analyzing the pros and cons of MOOCs as a way of teaching and in particular as a way of teaching analytical chemistry (or its subdisciplines). It was concluded that MOOCs do have advantages, especially if compared to short training courses for practitioners. The talk created quite some interest and discussions after the session.

Detailed discussion of this topic has been published: I. Leito, I. Helm, L. Jalukse. Anal Bioanal Chem 2015, 407, 1277–1281.
The course material as well as the link to registration for the spring 2016 edition of the course is available from https://sisu.ut.ee/measurement/

 

EACH_Student_Introductory_Meeting_2015Today (Aug 31, 2015) the introductory meeting of the EACH Erasmus Mundus (running on teh basis of the AMS programme) students with the programme coordinators took place at UT Chemicum.

All the 18 students (originating from Ukraine, China, India, Jordan, Congo, Nepal, Nigeria, Montenegro, Serbia, Macedonia, USA and Estonia), who start their studies in EACH in this autumn were participating. An overview of the programme was given (the slides are available from here) and a large number of questions were asked and answered, accompanied by tea/coffee and cake.

This is the first group of students who start their studies in the EACH Erasmus Mundus programme, so, exciting months are ahead, both for students and programme teachers/coordinators!

Photo on the left: EACH Students and their Tutor Kaisa Tihkan (on the right).

 

UT_Students_at_MSC_Euromaster_Summer_School_2015The MSC Euromaster Summer School 2015 in Pulawy (Jul 12-24, 2015) was again a success and the student feedback were very positive. Two reflections from AMS students are presented here:

Sagar Patel: I will remember my time spent in summer school held at Pulawy (Poland) for a lifetime. It was amazing and I don’t have words to express my feelings. I got very useful and practical knowledge about Metrology in Chemistry, statistics, interactions with customers, ISO 17025 and many more. Apart from studies I got a chance to work with students and professionals from different countries.

Karl Kütt: The MSC Summer school on metrology in chemistry has been a great addition to my studies. It combines the theoretical knowledge that I have learned in my program with the teamwork skills and real world problem solving skills that one encounters when running a real laboratory or a project. The course had extensive lessons on both uncertainties in chemistry and validation (a key aspect in the ISO 17025 standard). The neat thing about the summer school is that in its practical exercises you’re not presented with a wrong or a right way, but a situation in which every decision has its pros and cons. I think going to the summer school greatly improved my skills in working in a group, solving complicated problems as well as helped me make important contacts and great friends in the field of metrology.

Image on the left: UT students who participated in the MSC Summer School 2015, from left to right: Sagar Patel (India), Sylvestre Pagkeu (Cameroon), Martins Jansons (Latvia), Karl Kütt (Estonia)

Group_Photo_MSC_SS_2015This week saw the start (on Mon, Jul 13, 2015) of the 8th MSC Euromaster summer school 2015 in Puławy (Poland).

As in previous years, a core aim of the Summer school is shifting the activities away from the classical lecture-type of teaching by increasing the share of discussions, hands-on work, teamwork. As usual, a key activity of the summer school is the contest of student teams (setting up virtual laboratories and interacting with customers), which tests their knowledge and skills in all areas of metrology in chemistry.

This year the summer school makes further advances in terms of this “core shift”. One of the modules, which was carried out differently, was measurement uncertainty, which was the the main responsibility of UT during the summer school. Instead of the classical way – starting with lecture and then moving to discussion – the students were well in advance of the Summer school asked to learn the basic (and quite some not so basic) topics of measurement uncertainty using the web course Estimation of Measurement Uncertainty in Chemical Analysis. This way the lecturing part was omitted completely from the Summer school, as students had the necessary preparation. Thus, the whole measurement uncertainty module at the Summer school consisted of a big session of discussions and problem solving.

Another module, where hands-on work was very important was the Internal and external quality control module (delivered mainly by Ricardo Da Silva from University of Lisbon). He organised an “interlaboratory comparison” between students (in visual photometry) as a part of the session! Students were very excited to see how their results compared to their colleagues’ results.

The summer school still has one week to go and will finish on Fri, Jul 24, 2015.

 

 

Graphical_AbstractThe LC-MS group at the UT Institute of Chemistry were recently invited by the journal Analytica Chimica Acta to write a tutorial review on the topic of validation of liquid chromatography mass spectrometry (LC-MS) methods. This LC-MS method validation guide has now been completed. The tutorial review intends to give an overview of the state of the art of method validation in liquid chromatography mass spectrometry (LC–MS), especially with electrospray ionisation (LC-ESI-MS), and discuss specific issues that arise with MS (and MS-MS) detection (i.e. LC-MS-MS) in LC (as opposed to the “conventional” detectors). The review was eventually split in two parts (because of its large volume):

(as an April joke from Elsevier, part II appears page-wise before part I)

The review addresses and compares all the major validation guidelines published by international organizations: ICH, IUPAC, AOAC, FDA, EMA (EMEA), Eurachem, SANCO, NordVal, European Commission Decision 2002/657/EC. With every performance characteristic the tutorial review briefly compares the recommendations of the guidelines.

The Part I briefly introduces the principles of operation of LC–MS (emphasizing the aspects important from the validation point of view, in particular the ionization process and ionization suppression/enhancement); reviews the main validation guideline documents and discusses in detail the following performance parameters: selectivity/specificity/identity, ruggedness/robustness, limit of detection, limit of quantification, decision limit and detection capability. The Part II starts with briefly introducing the main quantitation methods and then addresses the performance related to quantification: linearity of signal, sensitivity, precision, trueness, accuracy, stability and measurement uncertainty. The last section of Part II is devoted to practical considerations in validation and a possible step by step validation plan specifically suitable for LC-MS-MS is presented.

With every method performance characteristic its essence and terminology are addressed, the current status of treating it is reviewed and recommendations and help are given, how to determine it, specifically in the case of validation of LC–MS methods. In many cases the published guidelines remain too general for being of help to practicing analyst. This LC-MS method validation tutorial review gives more specific advice based on the best available practice and can be used as a kind of LC-MS method validation manual.

Based on the recommended approaches presented in this guide to LC-MS method validation an LC-MS validation software ValChrom is currently under development by the UT team. The software development is supported by the EU Regional Development Fund (Development of software for validation of chromatographic methods, Project No. 3.2.1201.13-0020).

 

kvaliteedimark_sOn Apr 16, 2015 the consortium Estonian e-University awarded the title “e-course of the year” to the web course (MOOC) Estimation of Measurement Uncertainty in Chemical Analysis! This, together with the very positive feedback of the participants is a strong motivator for us to continue developing and delivering this course. Delivery of the next edition is planned in Spring 2016.

The 2015 edition of the “Estimation of Measurement Uncertainty in Chemical Analysis” course finished on Sunday, Apr 19, 2015. The overall number of registered participants was 489 (from 70 countries). The majority of the participants were practitioners from analysis laboratories and industry. Sadly, in spite of the reminders, more than 200 of them never actually started the course. Out of the 279 participants who started their studies 169 completed the course successfully. Thus, the overall completion rate (with respect to registered participants) is 34% and the completion rate of the participants who started the course is 60%, which can be considered reasonably good. Clearly the most difficult tests were the ones of weeks 5 and 6 containing full-fledged measurement uncertainty estimation using the ISO GUM and the Nordtest approaches. The ability to carry out uncertainty estimation of such analyses is essential and we are glad that so many participants managed to successfully complete these tests!

There were many interesting discussions of which some are still ongoing. By interacting with the participants we also learned a lot and we again got good suggestions for developing the course.

Many thanks to all our participants, without whom all this would have never become true!

 

(Image: private collection)

 

Agnes_Suu_in_Lab
Agnes Suu, an AMS and MSC alumna (graduated in 2013), has in the course of her PhD work made an achievement that literally redefines the way the pH of HPLC mobile phase (eluent) is measured. Her work (a continuation of her AMS master’s thesis) introduces a conceptually new approach of measuring pH of mixed-solvent liquid chromatography (LC) mobile phases and has been published in the Analytical Chemistry journal: Agnes Suu et al, Unified pH Values of Liquid Chromatography Mobile Phases. Anal. Chem. 2015, 87, 2623–2630.

Mobile phase pH is very important in LC, but its correct measurement is not straightforward and all commonly used approaches have deficiencies. The new approach is based on the recently introduced unified pH (pHabs) scale, which enables direct comparison of acidities of solutions made in different solvents, based on chemical potential of the proton in the solutions.

The work by Agnes represents the first experimental realization of the pHabs concept using differential potentiometric measurement for comparison of the chemical potentials of the proton in different solutions (connected by a salt bridge), together with earlier published reference points for obtaining the pHabs values (referenced to the gas phase) or pHabsH2O values (referenced to the aqueous solution). The liquid junction potentials were estimated in the framework of Izutsu’s three-component method.
pHabs values for a number of common LC and LC-MS mobile phases have been determined. The pHabs scale enables for the first time direct comparison of acidities of any LC mobile phases: with different organic additives, different buffer components etc. Agnes has developed a possible experimental protocol of putting this new approach into chromatographic practice and has tested its applicability. She has demonstrated that the ionization behavior of bases (cationic acids) in the mobile phases can be better predicted by using the pHabsH2O values and aqueous pKa values than by using the alternative means of expressing mobile phase acidity. Description of the ionization behavior of acids on the basis of pHabsH2O values is possible if the change of their pKa values with solvent composition change is taken into account.

 

Sander_SannikFour years ago, I was very fortunate to have the professor of Analytical Chemistry at Tartu University to invite me to join the international master degree programme AMS – Applied Measurement Science. At that time I was working as an analytical chemist at a national environmental chemistry laboratory. It all started with me contacting the professor to ask for help with problems I was facing in analytical method validation and after sending few emails back and forth, he suggested me to apply for the master programme, since clearly my thirst for the topic was bigger than could be satisfied with few emails. This was no easy decision, since the university is located at Tartu and my job was in Tallinn. This meant traveling every week between the two cities. But I remember thinking: this could be once in a lifetime opportunity – no matter what, take it.

Now, I am happier than ever for taking the opportunity. Because, even if this meant a lot of hard work and studying, traveling and pushing the limits, the benefits I got from this journey weigh more than the hard times I had to live through. Knowledge and experience being the utmost important, I met lot of new colleagues and friends from the University of Tartu and from the analytical chemistry community around my homeland. More than this, I found many exciting international friends from around Europe, Africa and even Asia. One of the highlights of my journey was the international summer school of Metrology in Chemistry – Measurement of Science in Chemistry, which took place in Portugal, where I met even more international new friends, who I am still friends with today. Some of them I talk to every week now and I have been visiting them in their homelands. Last autumn, all of the students who participated met in Brussels, Belgium for a ceremonial meeting and celebrations where we received an official diploma and an extra certificate for our Master degree – EUROMASTER of Measurement Science in Chemistry.
Now, I am working at a laboratory located at my homeland. It is a daughter-company of a Finnish environmental analytical laboratory, which is a part of worldwide global environmental company. For the last 8 months, I have had a most wonderful experience to build up an analytical laboratory from the scratch. This means starting with looking up the appropriate facility and designing the rooms on papers and ending with making the last arrangements of furniture and hiring and training the laboratory staff. This is not an easy job. This cannot be studied in any school or university. This can be learned only by experience, but I am most thankful for the prerequisites I gained from my study years. There is no practice without theory. Now the laboratory is finishing developing and validating the first analytical methods to be taken into routine use and to apply for accreditation. One might say that the hardest part is over, but I somehow doubt that, because future seems even more interesting and nothing can really be interesting without being difficult at start at least.

More than ever, I can now say that the Master programme – Applied Measurement Science – was 101% meant for me: I am “applying” measurement science now every day at my workplace. I consider myself very happy and I am very thankful for my family, friends, colleagues and professor for helping me in the last few years. Knowledge is worth more than gold and I hope my story would inspire others to take risks, accept challenges and eventually catch their dreams.

 

css.php